1 Introduction

In any industrial process or system, unexpected failures in equipment should be
detected and diagnosed for repair as soon as possible to minimize downtimes,
even though this is not an easy task. The real faults are masked by dozens of
symptoms, which are really a cascaded effect of the major faults. The intrinsic
uncertainty in the information requires an intelligent system, to interpret the
data and diagnose the abnormal components of the process.

In recent years much research has been devoted to the diagnosis of industrial
processes. Most of the industrial implementations of diagnostic systems focus
on either qualitative or quantitative techniques. The first, although perform well
with definite observations, are weak to analyze continuous observations (e.g. sen-
sors readings). The quantitative techniques focus on the analysis of continuous
data and have weak inference engines for discrete data. They normally include
mathematical models that are hard to obtain for many processes. This make
quantitative approaches very difficult to use in real systems.

Other Fault diagnosis methods based on neural networks and fuzzy logic, have
both their own limitations. Neural networks represent black box models that do
not provide more relevant information than the one contained in the output.
In neural networks is also difficult to integrate knowledge from other sources.
Other disadvantages are overfitting, large learning times and lack of ability to
deal with missing information. Fuzzy-based approaches can not deal with miss-
ing information in explicit form, and the overall dimension of rules, may blow
up strongly even for small components or processes [8]. The nature of industrial
processes, composed of both, discrete and continuous data, suggests the use of
hybrid diagnostic engines. Additionally, the diagnostic system has to be able to
handle noise, nonlinearities and missing information.

In this paper we show how to make a structured integration of FDI techniques [3],
with artificial intelligence model-based diagnosis, within the probabilistic logic
framework given by the Dynamic Independent Choice Logic. To analyze discrete
signals we are using a model-based diagnosis approach. Model-based diagnosis
is based on the fact that a component is faulty if its correct behavior, given by
a stored model, is inconsistent with the observations. To deal with continuous
signals, we use a fault detection and isolation (FDI) approach, commonly used
by the control systems community, that includes dynamic probabilistic models.
We have substituted the FDI classical models, such as differential equations or
ARMA models, with dynamic probabilistic models, in order to deal with noisy,
highly non-linear models, possibly with missing data inputs. These models have
simple structure and inference engine, and provide a good approximation to the
real signals. A main characteristic of our models, is that we learn the structure
(causal model), and the parameters (Lagrange coefficients), from raw data with-
out any preprocessing stage. The raw data may include noise and missing data.
The probabilistic models have an accuracy enough to allow the discrimination
between the steady state of the process and different mode faults.

We apply our method in a simulated industrial-strength power transmission net-
work.
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Description of the Approach

The main relevant aspects of our approach are:

1.

We adopt as a diagnostic strategy, the repair-man perspective [13], where
the aim of the diagnostic search is the location of the root-cause of the
disturbance. In this case, topographic reference to the location of the distur-
bance must be drawn from the first observations. Once the affected area is
located, more specific information is analyzed (e.g. sensor signals) to isolate
the abnormal components.

We modularize the fault detection and diagnosis tasks with the introduction
of agents. In our approach, there are three types of agents: Nature is re-
garded as an agent that provides stochastic assumptions about components
behavior. The Alarm Processor (AP) agent produces a set of explanations
consistent with first observed symptoms. Fault Detection (FD) agents asso-
ciated to every component in the process, are modeled as dynamic agents
specifying how streams of sensor data entail fault decisions. The output of
the AP agent represents a partial diagnosis to be confirmed by FD agents
(see figure 1).

The signals produced by sensors located in the candidate components of the
system, are analyzed by FD agents. Every component has and FD agent that
represents a transduction from inputs (the sensor values) into outputs (the
fault /no-fault decision). Transductions represent an abstraction of dynamic
systems [16].

The fault detection agent incorporates a predictive causal model, represent-
ing the no-fault behavior of the component. The model structure is gener-
ated from steady-state data, with a Bayesian learning algorithm. This model
includes the temporal relationships between process signals. The model de-
livers a probability distribution over the forecast variable states, computed
with a maximum entropy classifier algorithm.

The FD agent compares the one-step ahead prediction of the no-fault model
and the stream of data provided by the sensors. The residual analysis gives
an indication of the component behavior (normal/abnormal).

The logic programs representing the agents, are axiomatized in phase space
[2] in a similar manner to the event calculus.

The specification for a FD agent is not evaluated as a logic program that
needs to do arbitrary computation reasoning about the past. We know the
data from sensors have been already received, and the reasoning about the
fault decision depends on the processing of the received inputs.

We use the Dynamic Independent Choice Logic (DICL) [11] with a discrete
time structure, as the framework to develop the fault detection and diagnosis
approach. We benefit from the compact knowledge representation of logic,
the handling of uncertainty with probabilities, the modularization capabili-
ties, and the ability to represent temporal relations of the DICL.
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Figure 1. Agents based Diagnosis

3 REPRESENTATION

The dynamic independent choice logic is a theory built upon a general model of
agents interacting in an environment [11]. We assume a discrete time structure
T, that is totally ordered and has a metric over intervals. A trace is a function
from 7 into some domain A. A transduction is a function from input traces
into output traces, that is causal in the sense that the output at time ¢ can
only depend in inputs at times #’ where ¢ < ¢t. An agent is a specification of a
transduction. A state is the information that needs to be remembered in order
for the output to be a function of the state and the current inputs.

We modify slightly the definition of a dynamic ICL stated in [11], to introduce
the diagnostic dynamic independent choice logic (DDICL) [5]:

Definition 1. A diagnostic dynamic independent choice logic theory

(DDICL) is a tuple (A,Co, Fap,Po, ASM,), where

— A is a finite set of agents containing three types of agents: Nature, Alarm
Processor, and Fault Detection agents,

— (g, Nature’s choice space, is a choice space with alternatives controlled
by nature,

— Fap, is the logic program specification for the Alarm Processor agent. This
agent generates a set of explanations consistent with first observed symp-
toms.

— Po is a function [JCo — [0, 1] such that Vx € Co >_,c, Pola) = 1,

— ASM, is a function on A—0— AP such that ASM, is an agent specification
module for Fault Detection agent a.

We extend the definition for an Agent Specification Module (definition 2.1
given in [10]) with the notion of probabilistic observation function, to specify a



fault detection agent:

Definition 2. An agent specification module for FD agent a # {0, AP},
written ASM,, is a tuple ( Z,O, R, L, F,, ¢) where

— 7 is a set of fluents called the inputs. They specify what sensor values are
available at various times. The range the input trace is the cross product of
the ranges of the fluents in the inputs.

— O, is a set of fluents called the outputs. An output is a propositional fluent
that specifies a decision about the existence of a fault in a component at
various times.

— R, is a set of fluents called the recallable fluents. These are fluents whose
previous values can be recalled.

— L, is as set of fluents called the local fluents. These are fluents that are
neither inputs, outputs nor recallable.

— F, is an acyclic logic program. F, specifies how the outputs are implied by
the inputs, and perhaps previous values of the recallable fluents, local fluents,
arithmetic constraints and other non-temporal relations as intermediaries.

— ¢, is the probabilistic observation function, ¢ : Q — Py, mapping
observation states into a distribution over predicted states.

In this paper we emphasize the description of the fault detection agents. The
details about the alarm processor agent can be found in [4].

3.1 Dynamics Modeling

The specification for an FD agent, makes use of probabilistic functions as a
means of modeling the steady-state dynamics of sensor measurements. The sen-
sor measurements are discretized in fixed bins. The model represents the no-fault
behavior of the associated component.

To implement the function ¢, we developed a forecast modeling approach [5]
with the statistical inference engine based on the maximum entropy principle
[15] (see figure 2). The steady state causal models (structure and parameters)
are learned offline from discretized process data. When a stream of sensor data
needs to be analyzed, the inference engine provides a probability distribution
over discrete states of the sensor variable. The probabilistic inference amounts
to the computation of:

exp (Zﬁl Qi =¢,V = U))

PV =v|Q =q]= — N
,2,1 exp (}_1 (Qi=q,V= v’))
where

— (Q is a finite nonempty set of observation states,
— V is a finite nonempty set of predicted states.



The subset of Lagrange multipliers {y(Q; = ¢;,V =v),i = 1,...,N,q; =
1,...,|Ai],v = 1,..., K} are learned in an offline manner with a deterministic
annealing algorithm.

Equation 1 is an approximate solution based on the method proposed by Cheese-
man to find the maximum entropy joint probability mass function (pmf) consis-
tent with arbitrary lower order probability constraints. The method by Yan and
Miller uses a restriction of joint pmf support (during learning) to a subset of the
feature space (training set support). The small size of the training set support
maintains the learning times quite tractable.

The comparison between the prediction given by the sensor steady state model
and the stream of data, delivers a set of residuals that provide information about
possible faulty modes.
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Figure 2. Structure of a Fault Detection Agent

3.2 Temporal Logic Definitions

We specify FD agents with acyclic logic programs and predicates that explicitly
refer to time. The acyclicity corresponds to temporal ordering (if ¢; and ¢, are
time points and ¢; < ts, then the acyclic index for #; is lower than acyclic index
for t2). Every temporal predicate refers to the value of a fluent in a given time
point. A fluent is a function that depends on time.

Every fault detection agent has a local time scale, what give us the ability to
represent the different dynamics in a process. For example, in an industrial re-
heating furnace, with 1 or 2 samples a minute, we can track the temperature
inside the furnace, whereas the electric power feeding the furnace needs to be
known at a higher rate (probably 10 to 30 samples a second).

To recall the past values of fluents, we extend the version of temporal predicates



defined in [10], to allow the recalling of values beyond previous time point (val-
ues of fluent F'l at time point ¢t — n, where n > 1) :

was(Fl, Val, T,,,T) is a predicate that specifies that recallable fluent Fl was
assigned value Val at time T),.

was(FlL,Val, Ty, T) < time(Ty,) A T, <T A set(Fl,Val,T,) N
~ reset_before(Fl,T,,T).

where reset_before(Fl, Ty, T) is true if fluent Fl was assigned a value in the
interval (T, T):

reset_before(Fl,Ty,,T) < time(To) AN Ty <To AN To <T A
set(Fl,Val2,Ts).

now(Fl, Val, T) is a predicate that specifies that recallable fluent Flhas value
Val at time T.

now(Fl,Val,T) + set(Fl,Val,T).
now(Fl,Val,T) + ~ 3AViset(FI,V1,T) N was(Fl,Val,T1,T).

set(Fl, Val, T, ) is a predicate that specifies that recallable fluent Fl has value
Val at time T'. This predicate implements the reading of sensor values received
up to the time of failure.

time(T ) specify that T corresponds to a point in a discrete, linear time scale.

4 Example

We show the details of our method with a small power network (see figure 3).
This network, represents the interconnection of the different components. The
buses are nodes where industrial or domestic users are connected. The lines
allows the transference of electrical power between buses. The breakers help to
isolate a fault event from the rest of the network.

The breakers are the main protection for one bus and the backup protection for
the bus at the other end of the line. For instance, breaker Bri12, is the main
protection for bus I and the backup protection for bus 2. This scheme of backup
protection allows the isolation of a fault, even in the case of a malfunction in the
main breaker.

We assume the buses (nodes) are the only source of faults and there is only
one type of fault (e.g., three phase-to-ground fault). The fault persists during
the time span of the diagnosis. The first symptoms are the alarms indicating
the status of protection breakers (e.g., open or failed to open). There is also a
possibility that the status of some breakers is unknown.
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Figure 3. Single line diagram of a small power network

We axiomatise this as follows:

Nature’s Alternatives Cg

Co = {busl(faulted) : 0.01,
busl(ok) : 0.99, bus2(faulted) : 0.02,
bus2(ok) : 0.98, bus3(faulted) : 0.025,
bus3(ok) : 0.975}
{c_br12_open(open, faulted, ok) : 0.99, ...,
c_br32_open(open, faulted, faulted) : 0.98}

Alarm Processor Facts Fup .

br12(StBr) « busl(Stbusl) A bus2(Stbus2) A c-br12_open(StBr, Stbusl, Stbus2)
br21(StBr) < bus2(Stbus2) A busl(Stbusl) A c_br2l_open(StBr, Stbus2, Stbusl)
br13(StBr) < busl(Stbusl) A bus3(Stbus3) A c_brl13_open(StBr, Stbusl, Stbus3)
br31(StBr) + bus3(Stbus3) A busl(Stbusl) A c-br31_open(StBr, Stbus3, Stbusl)
br23(StBr) + bus2(Stbus2) A bus3(Stbus3) A c-br23_open(StBr, Stbus2, Stbus3)
br32(StBr) < bus3(Stbus3) A bus2(Stbus2) A c_br32_open(StBr, Stbus3, Stbus2)

All the axiomatisation above refers to the same time T,, when the alarms
where received (ignoring small delays). For this reason T, was omitted from the
clauses.



FD Agent Module
Agent Facts Fpys1 -

val(Voltage_busl model, V7', T) < was(Voltage busl_real, V;i* T —1,T) A
was(Voltage busl real, V;i°, T —5,T) A
c_voltage_bus1_model (V7 V' V,15)
val(Residual Voltage_busl, Ry, T) < now(Voltage_busl_model, V7', T) A

now(Voltage_busl_real, V¥, T) A
Ryy = Vii' = Vi

Sfault_-busl(yes, T) < now(Residual voltage -busl, Ryp1,T) A
Ryy1 > Avp

fault_busl(no,T) < now(Residual_voltage_busl, Ryp1,T) A
Ryp < Aver

We omit the specification for the fault detection agents at bus 2 and bus 3,
because is similar to the above presented.
The stream of data received from voltage sensors, starts at T; and ends at 1. We
assume nothing regarding the frequency of data sampling as long as we can dis-
tinguish between normal and abnormal behavior, analyzing the data. The only
assumption is that T; < T, < Ty, that is the voltage sensors data are related to
the alarms received. This allow us to represent different time scales in each fault
detection agent.
The structure of the predictive causal model for the variable voltage of compo-
nent busl, was generated offline from steady-state data, with a suitable Bayesian
learning algorithm (we use the algorithm given in [1]). In this case the output of
the algorithm delivers that fluent Voltage_busl_model depends on past observa-
tions of fluent Voltage busl_real at times T'— 1 and T — 5.
The stochastic part of the agent is achieved by the function

¢ cvoltage_busl_model (Vy7, VI, V,I5)

that maps the set of past observations {V;f, V,5*} to V7.

We have applied our approach in a simulated industrial-scale electrical power
network. The estimation of the fault location is difficult due to the presence of
multiple faults, the overwhelming number of alarms generated, and the possibil-
ity of malfunction of protective devices.

The simulated electrical power network has 24 buses, 34 lines and 68 breakers.
We have tested our approach with multiple events, multiple types of faults and
missing information on sensors. More details are given in [6]. The accuracy of
our method to identify the real faulted components was higher than 70 %.



5 Related Work

The concept of diagnosis agents in technical processes was applied in [9]. In
Lauber’s work, the agent is based on a dynamic Bayesian network (DBN) for
reasoning over time. The structure of the DBN was built with reliability engi-
neering methods (e.g. failure mode and effects analysis). Our agents handle the
dynamics of the environment with a more general class of dynamic networks (i.e.
We allow non-Markovian forecast models), whose structure was built with algo-
rithms that learn Bayesian networks. HybridDX [12] is a diagnostic system used
in aeronautics, that include model-based diagnosis and continuous and discrete
simulations of continuous processes. To model the dynamics in HybridDX, they
use physical causal models that are frequently not known in analytical form or
too complicated for calculations. In [14], Sampath presents a hybrid approach
that incorporates the concept of virtual sensors and discrete events diagnosis.
The analysis of sensor signals is performed by using different techniques, such as
spectral analysis, principal components analysis and statistical discrimination.
This approach assumes single fault scenarios and does not address the problem
of incomplete sensor data.

6 Conclusions

We have presented a diagnostic system framework that integrates: the dynamic
independent choice logic with multiple agents, probabilistic forecast models, and
fault detection and isolation techniques. The diagnostic strategy resembles the
approach of a repair-man, in which the first effort is the location of the affected
area and then a more specific analysis is achieved to isolate the abnormal com-
ponents. We split the diagnosis task in two phases: the first phase is performed
by the alarm processor (AP) agent that actuates as the disturbed area locator.
The output of AP agent is a set of component candidates to be confirmed as
real faulted components by the second phase. The second phase is performed by
fault detection agents, that analyze the behavior of sensor measurements. The
FD agent incorporates a one step-ahead forecast model describing the no-fault
model of the component. The analysis of residuals, computed from the differ-
ences between the no-fault model and the sensor measurements, give the final
decision about the fault in a component.
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