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Abstract. The approach to computer aided hierarchical circuit design on the base of univariate algorithms was 
derived by the analysing the mathematical principles behind recombination. In this paper it is considered how to 
introduce mutation in this approach. A number of experiments applied to circuit design are discussed. 
Experiments indicate that mutation and elitism increase the performance of the algorithms and decrease the 
dependence on the correct choice of the population size. 

1 Introduction 

The modern electronics market is characterized by a high level of complexity. Many different functions are 
integrated onto a single device. Together with the increase in circuit complexity the design complexity of these 
system–on-chip designs has increased as well. Advanced computer aided design tools are required for effective 
design of these mixed circuits. In the digital part various effective approaches have been considered [1]. 
Unfortunately, we do not have robust circuit synthesis in the analog domain. The analog blocks are still designed by 
hand, therefore, long time is required for mixed - analog - digital design although analog portion of mixed system is 
a small fraction of the overall design size. 

Considerable progress has been made in computer aided analog synthesis using evolutionary modelling [1]. 
Evolutionary design can autonomously reconfigure a circuit for adapting to the design requirements by means of a 
learning capability that employs evolutionary computation. Some positive results have been published [2-12]. 
However, long learning time, difficulty to predict when an effective capability will appear and other such problems 
have hindered progress in diffusion into electrical engineering fields. Some strategies to support efficient analog 
synthesis have been developed by means of combined genetic/annealing optimisation algorithm [4], differential 
evolution [5], hybrid genetic algorithm [12] etc. 

In this paper, we focus on probabilistic evolutionary models. The Estimation of Distribution algorithm EDA have 
been proposed by Mühlenbein and Paaß [13] as an extension of genetic algorithms. Instead of performing 
recombination of strings, EDA generates new points according to the probability distribution defined by the selected 
points. In [14] Mühlenbein showed that genetic algorithms can be approximated by an algorithm using univariate 
marginal distribution only (UMDA). In [15] Mühlenbein and Mahnig have extended this algorithm by means of 
mutation. The correct choice of the size of the population turned out to be difficult in evolutionary circuit design. 
Some numerical experiments are considered. Furthermore we use our results to determine effective ratio between 
the population size and the mutation rate. 

The remainder of the paper is organized as follows. Section 2 briefly surveys prior analog synthesis work. Section 
3 develops our hierarchical construction of design space. Section 4 presents experimental results. It turns out that 
mutation not only makes search algorithm more efficient in many cases, but also more robust in the sense that 
choosing the correct population size is of less importance. 

2 Related Works 

The computer-aided design of analog circuits is not trivial. Each possible solution lies within large search space. Its 
dimension is defined by amount of different component building blocks presented in the framework, amount of rules 
used to generate the circuit and the application for which the circuit is being evolved. Evolutionary algorithms are employed 
in computer aided circuit design as they provide a non-heuristic investigation in such large search space. 



Evolutionary approach considers a design as evolutionary process of creation, development and selection. There 
are two main problems in evolutionary circuit design. Methods of search space construction can be defined as the 
first problem and methods of its investigation are the second problem. They are mutually connected. The choice of 
space construction rules defines possibilities for new solution generation. Evolutionary algorithms have no 
restrictions on the representation form. Therefore, encoding must be chosen only for valid solution generation or 
repair operators are used for solution correction. 

Evolutionary algorithms are widely used for computer-aided design as design automation tools at various level of 
abstraction. Here, we restrict our discussion to analog circuit design. A number of successful examples have been 
published by the use of genetic algorithms in filters design [3, 6], transducers design [19] etc. A design variety was 
restricted by the fixed pre-defined topologies. 

Genetic programming [7, 8] introduces another direction for synthesis, which can be called as developmental 
synthesis. Unlike previous method the circuit topology, number and types of components, its values are evolved 
from embryonic circuit (really a set of short circuits) to full circuit. Genetic programming produces circuits that are 
highly redundant as result of knowledge absence about solved problem. Owing to the nature of such design 
technique most of circuits generated at the initial steps are faulty circuits. Introduction of transformation rules (cc-
bot instructions) allows generate circuit with valid graphs [9]. The application of evolutionary developmental 
synthesis was limited by blind search problems. Analysis of circuits both useful and faulty results in the increase of 
computational efforts. Another problem is the development of introns [10]. In electrical circuits they appear as faulty 
circuits after crossover and mutation operators. It was shown that a selective pressure on the circuit size is the simple 
effective method. This selective pressure requires the additional computational efforts for elimination of faulty 
circuits, however. A using of starting points introduced to the initial population [11] supplies less time, which needs 
to be spent on the search. This approach using a combination of evolutionary adaptation process and construction 
rules is effective. The similar circuits generation reduces evolutionary adaptation time by means of preliminary 
knowledge. Its disadvantage is a possibility of stable attractors around a starting point. Only local optimum can be 
found when landscape has saddle points in initial area. 

Perhaps the most important feature in evolution design is a choice of search algorithm. Its characteristics are 
defined by its speed, flexibility and ability to investigate a solution space effectively. During design most part of 
steps are iterated. Therefore algorithms should offer the choice of good solutions, which were generated very fast. 

One from developing branch of evolutionary algorithms are probabilistic models of promising solutions [13 - 17]. 
They can be divided in two categories: univariante distribution algorithms, like population-based incremental 
learning algorithm and univariate marginal distribution algorithm and bivariate distribution algorithms. Several 
typical examples of probabilistic models are compact genetic algorithm, ant colony algorithm, probabilistic 
incremental program evolution, factorised distribution algorithm etc. Probabilistic approach defines the direct 
connection between genotype and fitness. Recently ant colony algorithm has been used to computer - aided design 
of digital circuits [18]. 

UMDA [15 - 17] is an evolutionary algorithm that combines mutation and recombination by using of distribution. 
The distribution is estimated from a set of selected points. It is then used to generate new points for the next 
generation. Different selection methods have been investigated in [17]. We used only truncation selection, where τ 
is an amount of selected individuals. In [14] mutation has been introduced into UMDA by a concept called Bayesian 
prior. In practice, this means that the estimated probability is calculated as pi=(m+r)/(N+2r), where m is equal to the 
number of bits with value 1 in the selected parents in i loci, N is the population size. Hyperparameter r is chosen for 
OneMax function according to [14]. Some experimental results for several test functions have been considered as 
well [14]. 

In [20, 21] we introduced the hierarchical technique to evolutionary design of analog cells. By combining 
hierarchical design at element, topology and parameter levels and UMDA we were able to synthesize a range of 
analog circuits. Our goal in this paper is to demonstrate that mutation is also within the reach of this technique. 
Furthermore we consider a role of a several mutation rate to hierarchical circuit design. 

3 Evolutionary Design with Hierarchy 

The evolutionary design employed in our works is based on the hierarchical construction of design space. An 
overview of the design process is described in [21]. Our technique differs from the previously mentioned approaches 
in that we used transition from circuit construction to fitness evaluation without following steps:  

• genotype was interpreted in a SPICE netlist representation; 
• this netlist is processed by SPICE; 
• output from SPICE is then used to compute fitness for the individual. 

Our approach reduces computational efforts due to direct decoding of genotype to system of equations. We used 
modified nodal method likely to SPICE approach. 

For reduction of blind search the design process have to be described with the help of separate sets analogously 
DNA, in which each part defines separate properties of individuals and change in genotype can be performed only 
between correspondent blocks. Thereby we can describe properties of design object at the most bottom level and 



then to change these properties at various levels of hierarchy. Therefore the role of the coding of genotype is 
important, because at this stage the instructions on selection and placement of initial units are defined. 

The construction process is based on the theory of complete graphs. Each solution is represented as a hierarchical 
set, in which numbers of nodes, types of elements and parameters are defined at different levels. Its first level is 
amount of complete graph nodes. Second level is defined by sequence of elements from set ELEMENT={S, R, L, 
C} etc. We used only two-terminal components only. Alleles for components’ type are S, R, L, C, which represent 
switches, resistors, inductors, capacitors etc. Third level is parameter one. 

In our hierarchical coding the circuit is termed a phenotype. The genotype is defined as a linear structure with 
variable length: NEn ... E2E1 E0 Pk ... P2P1 P0, where N is the amount of complete circuit graph nodes; En ... E2E1 E0 is 
part of the genotype, defining the evolution of elements; Pk ... P2P1 P0 is part of the genotype, describing parameter 
evolution (changes parameter elements without changes of topology); n is amount of circuit elements; k is amount 
of circuit element parameters. Note that when we use the complete graph and m bits to parameter description, we get 
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For elimination of blind search the design is described by separate sets E, P analogously to DNA. The set Е 
describes a set of components on the most bottom level. Their connection is defined by the sequence of compete 
graph branches. Set Р determines component parameters. Analog circuits are hard to manufacture. Only fixed 
parameters are possible for circuit manufacturing. Therefore, parameters can be changed only as discrete values. 
Finally, the chromosome hierarchy structure is defined as discrete set (Fig. 1). 

 
Element Connection 

nodes 
Parameters 

R (i1, j1), (i2, j2) {100, …,100M} 

L (i1, j1),(i2, j2) {1 nH, …, 1H} 

C (i1, j1), (i2,j2) {10 nF, …, 1 mF} 

 

Fig. 1. A chromosome hierarchy structure with the dynamic parameter and topology coding used for the circuit description 

In general, evolutionary circuit design can be divided into two main fields [2]: evolutionary design optimisation 
and creative evolutionary design. Many researches seem to fall into single category, but some work does attempt to 
combine evolutionary optimisation and creative evolutionary design into integral evolutionary design systems. 
Usually several applications of circuit having fixed topology are determined by its parameters. A variation of single 
parameter can change a bandwidth, gain etc. Therefore, simulation within single parameter supplies only local 
search. We use some fixed amount of parameter variety. Each element is determined by type and parameter. The 
first and the second bits of each group define the type. Each element can take on 3 different types, namely, switch 
(0), capacitance (1) and inductance (2). The following bits define sizing of component. Parameter of switch can take 
on two fixed values only. We consider that 0 means to a switch turned off and 1 to a switch turned on. Parameters of 
inductance and capacitance can be chosen from fixed range. The input of the circuit is always node 1 and the output 
is node 2. The branch 1 is always series connection of a voltage source and the source resistance. Branch 2 is the 
load resistance. Circuit being evolved contains (n-2) branches. Figure 2 shows a chromosome of length 23 and the 
circuit created from it. 

During evolution adaptation we use a growing technique, where the user can specify the boundary limits on the 
amount of nodes. Then set Е is formed by two subsets {E1, E2}, where subset Е1 includes elements describing 
structure of the initial solution; subset Е2 includes elements describing evolutionary process. All elements of subset 
Е2 are set to 0 in the initial population and then the initial set E is described as {E1, 0}. The initial population can be 
defined randomly, from user’s experience or from a textbook. During evolutionary design any element of set Е 
randomly can change. In this case set Р automatically change. There are 2 possible cases. If the element, which is in 
Е1, changes to 0, then corresponding elements in set Р are set to zero. In the second case including change of an 
element from 0 to any from set ELEMENT, corresponding elements are defined in set Р as element parameters. 
Restrictions are fixed amount of switches defined by user. 

At the following stage of evolution the elements of set Р can be changed by a random amount from discrete set. 
Distinctions on this level are definition of parameters within fixed parameters. Possibilities of different phenotype 
forms describe P set. It consists of two subsets {P1, P2}. Allowed constants, defining one possible phenotype form 
are elements of first subset. P2 is subset of constants, defining a few forms of phenotype. Therefore subset P2 
contains parameters, which can be changed. The correspondence between constants of this subset and variables in 
phenotype to be satisfied defines the variable domains. All constraints are defined by heuristic rules. 



 
Amount of 
nodes 

Branch 1 Branch 2 Branch 3 Branch 4 

0 1 1 1 0        0 1 1 
        ↑          ↑ 

Element    parameter 

0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 

 

 
Fig. 2. Chromosome and the circuit, created from it 

Then the best solution of topological design level is used as initial circuit to the following parametrical 
optimisation. At this step all bits correspond to element parameter, what supplies more flexible search within fixed 
topology. This type of connection between genotype and phenotype is the dynamic coding, allowing to use the 
adaptation of genotype and phenotype simultaneously. Various forms of connection between genotype and 
phenotype are possible by the use of P1 and P2. Subset P1 defines only one possible form, while subset P2 
establishes the dynamic relation between genotype and phenotype. One form of genotype defines a few forms of 
phenotypes. Therefore evolution on phenotype level is possible for dynamic coding. The use of such hierarchy to 
chromosome coding eliminates blind search by applications of heuristic rules and the reduction of search space 
dimension. 

Fitness is measured in terms of the sum of the absolute weighted difference between the actual output voltage and 
target one. These error values were summed across evaluation points Nc for definition of fitness value 
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where f is the frequency of fitness calculation, d(f) is the absolute value of difference between output voltage and 
the target and W (d(f), f) is the weighting for difference d(f) at frequency f. 

Fitness landscape has many local optimums, which can be explained by using of a set of particular topologies 
therefore there is a set of different particular fitness landscape for each solution. 

EXPERIMENTAL RESULTS 

This section applies our hierarchical technique developed in the previous section and distribution algorithms to 
lowpass filter design. The starting point for the design of a filter is the specification by the user of the frequencies 
for the filter’s passband and stopband. The design of filters with high stopband attenuation and low passband 
attenuation is difficult. It is more difficult to design a lowpass filter with small transitional region between two 
bands. The experiment described here is based on “synthesis of lowpass filter” in [8]. We considered a filter design 
with a passband below 1000 Hz and a stopband above 2000 Hz. It is acceptable if the output voltage in the passband 
is between 970 mV and 1 V. It is acceptable if the output voltage in the stopband is between 0 V and 1 mV. The 
ratio in the passband (1 Volt) to the maximum acceptable signal in the stopband (1 millivolt) is 60 decibels, but 
there is a 2-to-1 ratio between the stopband frequency and the passband frequency. The known approaches for filter 
design find the required circuit, but there are different fluctuations in the stopband and the passband. 



The first negative result was the increase of the ratio between the genotype length and the population size 
supplying the finding of optimal solution. In [20, 21] we provided the effective design with the ratio within range 
from one to two. We emphasize that effective integral design can be supported with the ratio above two only. It can 
be explained that fitness landscape has many local optimums. The search can to stop in local hill between two large 
valleys with near heights. Unfortunately it is impossible to use a theoretical framework to determine an optimal 
mutation rate. In order to make a fair comparison, we have to compare actual simulation results. In addition we 
investigate UMDA with elitism by simulation. We use a set of circuits, which can be generated within topology of 
complete graph with 3 nodes as the simplest test function. The best circuit is given in Fig. 2. Amount of hits is equal 
to the 86. Our results have been obtained under assumption that amount if iteration is less that genotype length. 

Table 1. Performance comparison with different mutation rate for population size Np=300 and truncation selection with τ=0.02 – 
0.04. Succ is the number of times, when the best solution was found in 100 runs, Gen is the number of generations and Count is 
the number of evaluation after 10% of the population consists of the best solution 

τ=0.02 τ=0.04 Mutation 
rate r Iteration Count Success 

Mutation 
rate r Iteration Count Success 

0 4.8 1440 29.7 0 6.07 1820 29.7 
0.068 5.68 1703 55.4 0.136 6.49 1946 36.6 
0.136 5.85 1755 59.4 0.272 6.61 1983 53.5 
0.204 5.83 1748 57.4 0.409 7.02 2105 50.5 
0.272 5.81 1744 58.4 0.545 6.6 1981 47.5 
0.341 6.2 1860 64.3 0.682 7 2100 45.5 
0.409 5.87 1763 64.4 0.818 7.6 2279 46.5 
0.477 6.63 1989 61.4 0.954 7.6 2279 43.6 
0.545 6.7 2010 66.3 1.09 7.86 2360 37.6 
0.614 7.06 2119 61.4 1.23 8.32 2495 43.6 
0.682 7.36 2210 70.3 1.36 8.43 2528 46.5 
0.75 7.49 2248 70.3 1.5 8.92 2677 52.4 
0.818 7.17 2151 69.3 1.63 9.1 2729 41.6 
0.886 8.54 2562 71.3 1.77 10.02 3006 46.5 
0.954 9.06 2719 63.4 1.91 11.92 3575 47.5 
 

In tables 1, 2, we examine the behaviour for a fixed number of bits 23 and a truncation threshold τ between 0.02 
to 0.04. Population size changes from Np=300 to Np=500 respectively. We considered the successful runs after 10% 
of the population consisted of the best solution only. It can be seen that for all mutation rate and the truncation 
threshold performance with prior was better than performance without a prior. When the mutation rate is high, the 
number of function evaluations increases, as the probabilities are shifted towards ½ too much. When the mutation 
rate decreases, the success rate decreases also, because it becomes too improbable to flip the remaining bits that are 
wrong. It is remarkable that for all runs increasing selection pressure (using smaller values of τ) is more effective. 
Reducing the population size from 500 to 300 reduced the number of successful runs from (42.6 – 86.1) to (29.7 – 
71.3). The number of function evaluations decreased in this process, but because the success rate was too low. For 
the runs without mutation (r=0), the population size had to be carefully chosen in order to have a good result. When 
using the high mutation rate, this choice is much more easy. 

Table 2. Performance comparison with different mutation rate for population size Np=500 and truncation selection with τ=0.02 – 
0.04. Succ is the number of times, when the best solution was found in 100 runs, Gen is the number of generations and Count is 
the number of evaluation after 10% of the population consists of the best solution 

τ=0.02 τ=0.04 Mutation 
rate r Iteration Count Success 

Mutation 
rate r Iteration Count Success 

0 5 2483 59.4 0 6.09 3046 42.6 
0.114 5.63 2818 73.3 0.2272 6.54 3270 49.5 
0.227 5.5 2746 70.3 0.455 6.94 3471 52.4 
0.341 5.57 2789 70.3 0.682 6.42 3213 46 
0.455 6.06 3029 69.3 0.909 7.04 3520 47.5 
0.568 5.92 2959 72.3 1.136 7.42 3713 46.5 
0.682 6.15 3076 84.1 1.364 7.06 3531 47.5 
0.795 6.09 3046 75.2 1.59 7.5 3750 47.5 
0.909 7 3500 74 1.818 7.9 3949 48.5 
1.023 6.76 3379 86.1 2.045 8.22 4111 44.5 
1.136 7.05 3525 79.2 2.27 8.39 4193 43.6 



Still higher rate of success rate can be reach if elitism is used. In this case the best string is kept in the population. 
In table 3, the case with elitism is compared to a run without elitism. It can be seen, that for the most runs except the 
3 runs performance with mutation was better than performance without mutation. 

 

Table 3. Performance comparison with different mutation rate for population size Np=500 and truncation selection with and 
without elitism, τ=0.02. Succ is the number of times, when the best solution was found in 100 runs, Gen is the number of 
generations and Count is the number of evaluation after 10% of the population consists of the best solution 

Without elitism, τ=0.02 With elitism, τ=0.02 Mutation 
rate r Iteration Count Success Iteration Count Success 

0 5 2483 59.4 4.95 2473 54.4 
0.114 5.63 2818 73.3 5.81 2905 78.2 

0.2272 5.5 2746 70.3 5.8 2897 72.3 
0.341 5.57 2789 70.3 5.87 2934 75.2 
0.455 6.06 3029 69.3 5.79 2894 79.2 
0.568 5.92 2959 72.3 6.69 3344 79.2 
0.682 6.15 3076 84.1 7.375 3688 79.2 
0.795 6.09 3046 75.2 6.49 3244 81.2 
0.909 7 3500 74 6.54 3271 82.1 
1.023 6.76 3379 86.1 7.24 3620 78 
1.136 7.05 3525 79.2 7.5 3747 88 

 
Without mutation choosing a too small population size leads to a small success rate, while choosing a too big 

population size is a waste of function evaluations. Both effects are overcome by using a high mutation rate. Thus, 
we used the mutation rate between 0.15τN to 0.5τN depending on the size of design space. 

Then we consider a design of analog cells to Field Programmable Gate Arrays. The best circuit, having minimal 
amount of elements is given in Fig. 3, a. Each cell contains 6 elements only. From fig. 3, b we can see that the 
frequency response falls within the target specifications. PSPICE was used to evaluate the best circuit 
characteristics. 

 
a 

 
b 

Fig. 3. The best circuit (a) and its characteristics (b) 

 



CONCLUSIONS 

In this paper we have developed hierarchy circuit representation and distribution-based technique to integral 
evolutionary analog circuit design. The results obtained have shown that distribution algorithms with mutation are 
both fast and requiring small computational efforts. Proposed algorithms require a smaller population size with 
comparison with [7 - 9]. Truncation selection with smaller τ has shown to be better in computational complexity. A 
using of elitism allows reserve best solutions during evolutionary search and to increase the success rate. In addition, 
by using mutation, the dependence on the right choice of the population size could be reduced. 
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