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Abstract. The paper proposes a feature subset selection algorithm as
a pre-processing step to the induction of a classifier from data sets. The
learning algorithm is based on a generalization of the rough set theory,
the variable precision rough set (VPRS) model. The feature subset se-
lection is based on the application of the minimum description length
(MDL) principle. Finally, the precision of the rough classifiers induced
after the proposed selection model on several data sets has been evalu-
ated and compared with other algorithms.

1 Introduction

In supervised classification learning, one is provided with a training set con-
taining labelled instances or examples. Each labelled instance contains a list of
feature values (attribute values) and a discrete label value (class label). The
induction task is then to build a classifier that will correctly predict the label
of novel instances. Common machine learning algorithms, including top-down
induction of decision trees, such as CART [3] and C4.5 [11], are known to suf-
fer from irrelevant features. A ”good” choice of features may not only help to
improve performance accuracy, but also may aid to find smaller models for the
data, resulting in better understanding and interpretation of the data.

The selection of relevant features, and the elimination of irrelevant ones, is
one of the central problems in machine learning, and many induction algorithms
incorporate some approach to address it. There have been many attempts to
define what is a ”relevant” feature, in the machine learning literature. John et
al. [7] define two notions of relevance: strong and weak relevance. Strong rele-
vance implies that the feature is indispensable in the sense that it cannot be
removed without a loss of prediction accuracy. Weak relevance implies that the
feature can sometimes contribute to prediction accuracy depending on which
other attributes are considered. Features are relevant if they are either strongly
or weakly relevant, and are irrelevant otherwise.

The rough set theory, proposed by Pawlak [8, 9], is an attempt to dispose a
formal framework for the automated transformation of data into knowledge. It



is based on the idea that any inexact concept (for example, a class label) can
be approximated from below and from above using an indiscernibility relation-
ship (generated by information about objects). Pawlak points out that one of
the most important and fundamental notions to the rough sets philosophy is
the need to discover redundancy and dependencies between features [9]. Since
then, this philosophy has been used successfully in several tasks as, for example,
construction of rule based classification schemes, identification and evaluation of
data dependencies, information-preserving data reduction, etc. [10].

In this paper, a generalization of Pawlak’s model, that is known as variable
precision rough set model (VPRS) [14], is used to construct a rule based classi-
fier from data sets. Since the induction process is a large time-consuming task
when many features are considered, the paper proposes a feature subset selection
method as a pre-processing step to improve the induction process.

The paper is organized as follows. Section 2 briefly introduces the relevant
rough set terminology. Section 3 shows how the rough set theory may be used
in classification tasks and introduces the concept of β–rough classifier. Section 4
shows the relationship among rough set theory and the feature subset selection
and describes an algorithm for selecting a ”good” set of attributes. And finally,
results and conclusions are presented in section 5.

2 Rough Set Theory

This section describes the basic concepts in rough set theory, viewed from the
perspective of the supervised classification learning. An information system is a
pair S = 〈U,A〉, where U is a non-empty, finite set called the universe, and A is a
non-empty, finite set of attributes (or features). Every attribute a ∈ A is a total
function a : U −→ Va, where Va is the set of values of the attribute a, called the
domain of a. An equivalence relationship, referred to as indiscernibility relation,
can be associated with every subset of attributes P ⊆ A. This relation is defined
as:

IND(P ) = {(x, y) ∈ U × U : for every a ∈ P, a(x) = a(y)} (1)

The elements of U that satisfy the relation IND(P ) are objects with the
same values for the attributes P and they are indiscernible with respect to P .
Therefore, the indiscernibility relationship induces a partition of the universe
into disjoint classes (each one of them given by the equivalence classes in the
quotient set U/IND(P )).

In the rough set theory [8], Pawlak proposes that given any subset of features
P , any concept X ⊆ U can be defined approximately by the employment of two
sets, called lower and upper approximations. The lower approximation, denoted
by PX, is the set of objects in U which can be certainty classified as elements
in the concept X using the set of attributes P , and is defined as follows:

PX =
⋃
{Y ∈ U/IND(P ) : Y ⊆ X} (2)



The upper approximation, denoted by PX, is the set of elements in U that
can be possibly classified as elements in X, formally:

PX =
⋃
{Y ∈ U/IND(P ) : Y ∩X 6= ∅} (3)

The boundary region of the concept X in relation to P is defined as follows:

BNDP (X) = PX − PX (4)

If BNDP (X) = ∅ then X is definable using P , otherwise X is a rough set
with respect of P .

The degree of dependency of a set of features P on a set o features R is
denoted by γR(P ), with 0 ≤ γR(P ) ≤ 1, and is defined as:

γR(P ) =
|POSR(P )|

|U | (5)

where POSR(P ) is the set defined by:

POSR(P ) =
⋃

X∈U/IND(P )

RX (6)

namely, POSR(P ) contains the objects of U which can be classified as belonging
to one of the equivalence classes of IND(P ), using only features from the set R.
If γR(P ) = 1, then R functionally determines P .

P is an independent set of features if there does not exist a strict subset
P ′ of P such that IND(P ) = IND(P ′). A set R ⊆ P is a reduct of P if it
is independent and IND(R) = IND(P ). Each reduct has the property that a
feature can not be removed from it without changing the indiscernibility relation.
Many reducts for a given set of features P may exists. An attribute a ∈ P is
indispensable if IND(P ) 6= IND(P \ {a}). The core of P is the union of all the
indispensable features in P .

The indispensable attributes, reducts, and core can be similarly defined rel-
ative to a decision attribute or output feature. The precise definitions of these
concepts can be fount in Pawlak’s book on rough sets [9].

A direct application of the rough set theory, that is shown in the next sec-
tion, is the construction of rule based classifiers from data sets based on the
approximation of the target concepts (defined by the class labels) in terms of
the knowledge given by the feature values.

3 A β–rough Classifier

A classifier maps an unlabelled instance to a class label using some internally
stored structures. Given a test set, an estimation of the accuracy of the classifier
can be defined as the ratio of the number of correctly classified instances to the
number of instances. An inducer generates a classifier from a training set. The
(estimated) accuracy of an inducer, given a training set and a test set, is the
accuracy of the classifier induced from the training set when run on the test set.



A decision table is an information system of the form S = 〈U,A∪{d}〉, where
d /∈ A is a distinguished attribute called the decision attribute or class attribute.
The elements of the set A are referred to as condition attributes. A decision
table is a classifier that has as its internal structure a table of labelled instances.
Given a novel instance, the classification process is based on the search of all
matching instances in the table. If no matching instances are found, unknown
is returned; otherwise, the majority class of the matching instances is returned
(there may be multiple matching instances with conflicting labels). In addition,
it is important to dispose of these classification rules with the minimal effort,
and therefore, the simplification of decision tables is of primary importance.

In the rough set framework, the simplification process of a decision table
comprises two fundamental tasks. On the one hand, reduction of attributes con-
sists of removing redundant or irrelevant attributes, without losing any essential
classification information. The computation of the reducts for the condition at-
tributes relative to the decision attribute is carried out to achieve this goal.
On the other hand, the reduction of attribute values is related to the elimina-
tion of the greatest number of condition attribute values, maintaining also the
classificatory power.

A rough inducer simply passes the training set to a reduced decision table,
herein referred to as rough classifier, after the reduction process above men-
tioned. Each row of the reduced decision table represents a classification rule of
the rough classifier.

Although, the original rough set theory provides an adequate framework for
data analysis in general, and for classification tasks in particular, some limita-
tions have been detected. One of the major limitations is the inability to extract
knowledge from data with a controlled degree of uncertainty. In fact, all rules of
the rough classifier must be deterministic, so that inconsistent instances must
be discarded a priori.

One extension of the Pawlak’s theory that is aimed at handling uncertain
information is the variable precision rough set model (VPRS)[14]. The VPRS
model is a generalization of the rough set model that introduces a controlled de-
gree of uncertainty within its formalism. This fact leads to more general notions
of the upper and lower approximations. The fundamental notion introduced by
the VPRS model is the majority inclusion relationship. To define this concept
it is necessary to introduce first the notion of misclassification error c(X, Y ).
This measure is defined as the ratio of objects in X that also belongs to Y ,
and it evaluates the misclassification error that is committed when the concept
given by the set X is considered as a part of a target concept (given by the Y ).
Formally, it is defined as follows:

c(X, Y ) =
{

1− |X∩Y |
|X| if |X| > 0

0 if |X| = 0
(7)

Based on this measure, it can be defined the standard set inclusion rela-
tionship between X and Y as X ⊆ Y if and only if c(X, Y ) = 0. The natural
relaxation of this standard definition to allow c(X,Y ) greater than 0, causes the



extended definition of inclusion relationship. In addition, Ziarko [14] establishes
as requirement that the number of elements of X in common with Y should be
above 50%. This restriction on the admissible level of classification error is speci-
fied by the parameter β and, it must be within the range 0 ≤ β < 0.5. According
to this requirement, the majority inclusion relationship is defined as X ⊆β Y
if and only if c(X, Y ) ≤ β. It follows directly from the above definition that
the majority inclusion relationship becomes the standard inclusion relationship
if β = 0.

The extended inclusion relationship defined has an effect on the original
notions of lower and upper approximations, obtaining the following generalized
notions. Given an information system S = 〈U,A〉, any subset of features P ⊆ A
and any concept X ⊆ U , the β–lower approximation of X is defined as:

P βX =
⋃
{Y ∈ U/IND(P ) : c(Y, X) ≤ β} (8)

Similarly, the β–upper approximation of the concept X ⊆ U is defined as:

P βX =
⋃
{Y ∈ U/IND(P ) : c(Y, X) < 1− β} (9)

The remaining notions of the rough set theory can be defined immediately
once the new definitions of the approximations of a concept are given. An induc-
tion algorithm considers all instances of the training set (including the incon-
sistent ones) and carries out the simplification process according to the VPRS
model. The simplified decision table will be referred to as β–rough classifier.

The next section describes a method of feature selection proposed to improve
the behaviour of the induction algorithms, and in particular the inducer of β–
rough classifiers which have been introduced in this section.

4 Selection of Relevant Features

For the rough set theory the core of an information system is the set of indispens-
able features. Removal of any attribute from the core set changes the positive
region with respect to the label [9]. This fact can be interpreted as a similarity
between the core set and the notion of strong relevance introduced by John et al.
[7]. On the other hand, the attributes of the core may be insufficient for defining
all decision classes. Therefore, other attributes may be added to the core in order
to maintain the same classification power that the one achieved with all the fea-
tures. The minimal set of attributes that is sufficient for satisfying this property
is called a reduct. Attributes in the union of all reducts but not belonging to the
core set can be interpreted as features with weak relevance. In this sense, aiming
at reducing irrelevant features, several methods have been developed [10].

This paper proposes a feature subset selection process that should be carried
out before the induction of β–rough classifiers. The aim of this proposal is to
reduce de original set of attributes and, therefore, decrease the computational
effort for the calculation of optimal reducts. This pre-processing step is fitted in
the filter approach to the feature subset selection. Filter methods select features



(based on properties of the data itself and independent of the induction algo-
rithm) which are afterwards used by the induction mechanisms. Another class of
feature subset selection methods is referred to as wrapper approach since these
algorithms treat feature selection as a wrapper around the induction process.
Namely, they conduct a search for a good feature subset using the induction
algorithm itself as part of the evaluation function.

As it has been mentioned above, filter methods are based on properties of
the data itself to select features. In the rough set framework, the natural way to
measure the prediction success (i.e., the goodness of a set of condition attributes
to predict a decision attribute) is the degree of dependency (see (5)). However,
Düntsch and Gediga [4] have shown the weakness of this measure in order to
assess an estimation of the predictive accuracy of a set of condition attributes
Q with regard to a class attribute d. To overcome this deficiencies, Düntsch
and Gediga define the notion of rough entropy [5]. Based on this measure it is
defined in this work a significant coefficient, which will be used by the proposed
algorithm to select relevant features. The underlying principle is the minimum
description length principle (MDLP) [13] since the definition of the rough set
entropy comprises two different factors: the complexity of the hypothesis given
by the set of condition attributes Q, and the accuracy of a given hypothesis Q
to determine the value of the decision attribute d.

The associated complexity of a given set of condition attributes Q can be
evaluated through the entropy of the partition U/IND(Q), which will be denoted
by H(Q). On the other hand, the conditional rough entropy H(d|Q) can be used
to evaluate the accuracy that is achieved when the condition attributes Q are
used to predict the value of the condition attribute d. The formal definition of
the rough entropy, denoted by RH(Q, d), is given by the following expression:

RH(Q, d) = H(Q) + H(d|Q) =

= H(Q) +

{
{1− γQ(d)} log2 |U |+

∑
Xi⊆U\POSQ(d)

|Xi|
|U | log2

|Xi|
|U |

}
=

= {1− γQ(d)} log2 |U | −
∑

Xi⊆POSQ(d)

|Xi|
|U | log2

|Xi|
|U |

(10)

where Xi represents each one of the classes of the partition U/IND(Q), the set
POSQ(d) is the positive region of Q with regard to the decision attribute d, and
γQ(d) is the degree of dependence of the attribute d on the set of attributes Q.

In order to evaluate the significance of a condition attribute, a ∈ Q, with
regard to the decision attribute d, it is evaluated the variation that the rough
entropy suffers when the considered attribute is discarded from Q. Namely, it is
computed the term ∆aRH(Q, d), given by the difference between RH(Q, d) and
RH(Q \ {a}, d). Formally,

∆aRH(Q, d) = RH(Q, d)−RH(Q \ {a}, d) =
{H(Q)−H(Q \ {a})} − {H(d|Q \ {a})−H(d|Q)} =

= ∆aH(Q)−∆aH(d|Q)
(11)

where ∆aH(Q) and ∆aH(d|Q) are defined so that both terms are positive.



The significance of an attribute a ∈ Q is defined in a way that its value is
greater when the removal of the attribute leads to a greater diminution of the
complexity of the hypothesis Q \ {a}, and simultaneously, to a smaller loss of
accuracy of the hypothesis. Before the formal definition of the significant rough
coefficient, the terms H(Q) and H(d|Q) can be normalized between the values
0 and 1, in the following way:

S(Q) = 1− H(B)
log2(|U |)

(12)

since 0 ≤ H(Q) ≤ log2(|U |), and

S(d|Q) = 1− H(d|B)
{1− γQ(d)} log2 (|U | − |POSQ(d)|) (13)

given that H(d|Q) ≤ {1− γQ(d)} log2 (|U | − |POSQ(d)|), as Düntsch and Gediga
have shown [5].

Once the entropies have been normalized, the significant rough coefficient
of the attribute a within the set of condition attributes Q with respect to the
decision attribute d, denoted by σa(Q, d), is defined as follows:

σa(Q, d) =
{−∆aS(Q)}+ {1−∆aS(d|Q)}

2
(14)

where ∆aS(Q) and ∆aS(d|Q) are defined in a similar way that the terms ∆aH(Q)
and ∆aH(d|Q), respectively, in expression (11). The definition of the significant
coefficient σa(Q, d) is done according to what has been stated above, concerning
both the decrease of complexity and accuracy of the resulting model.

Moreover, it is possible to define a measure of the significance of an attribute
that includes the β parameter of the VPRS model. This new coefficient, referred
to as significant β–rough coefficient and denoted by σa,β(Q, d), is defined by:

σa,β(Q, d) =
{−∆aS(Q)}+ {1−∆aSβ(d|Q)}

2
(15)

where ∆aSβ(d|Q) is the variation of the conditional β–rough entropy (defined
in a similar way that the conditional entropy, see (10)), when the condition
attribute a is removed from the attribute set Q.

Once the metric that is used to evaluate the significance of an attribute (the
significant β–rough coefficient)is defined, the proposed algorithm for selecting
relevant features is described according to Blum and Langley [2]. These authors
state that a convenient paradigm for viewing feature selection methods is that
of heuristic search, with each state in the search space specifying a subset of the
possible features. Following Blum and Langley viewpoint the four basic issues
that characterize this method are:

1. The starting point in the space, which in turn influences the direction of
search and the operators used to generate successor states. The proposed
algorithm starts with all attributes and successively removes them. This
approach is known as backward elimination.



Table 1. Reduction in the number of attributes after feature selection.

Cases Attributes Classes Feature Selection
Cont Discr β Attributes

anneal 898 9 29 6 0.025 14
breast-c 699 9 – 2 0.025 6
colic 368 10 12 2 0.04 8
credit-a 690 6 9 2 0.0125 11
heart-c 303 8 5 2 0.05 8
hypo 3772 7 22 5 0.0025 17
vehicle 846 18 – 4 0.35 13

2. The organization of the search. Any realistic approach relies on a greedy
method to traverse the space considering that an exhaustive search is im-
practical. At each point in the search, the proposed algorithm considers all
local changes, namely, it evaluates the significance of each attribute of the
current set of attributes.

3. The strategy used to evaluate alternative subsets of attributes. In this paper,
the variation of the normalized β–rough entropy has been chosen for this
purpose. Specifically, at each decision point the next state that is selected
is that one which results of remove the attribute with the least significant
β–rough coefficient.

4. A criterion for halting the search. In the algorithm, the search terminates
when the difference between the degree of dependency at initial state and
the current state (both with respect to the decision) do not go beyond a
predefined threshold.

The next section describes the experiments that have been carried out in or-
der to test the performance of a inducer of β–rough classifiers, which in addition
perform the pre-processing step of the feature subset selection, described in this
section.

5 Results and Conclusions

This section describes the experiments carried out using the previously intro-
duced method to evaluate the accuracy of the β–rough classifiers. The classifiers
induced using the proposed method are referred to as β–RS+FS classifiers. The
data sets used in the experiments are available at the repository of the Univer-
sity of California in Irvine [1]. Besides, and given that both the inducer and the
feature-selection algorithms deal with discrete variables and without missing val-
ues, it has been necessary to discretize and complete the original data sets. On
the one hand, the entropy based method of Fayyad and Irani [6] have been used
to discretize continuous variables. On the other, and once the original data have
been discretized, the missing values have been replaced by the value of the mode



Table 2. Comparison of induction algorithm of β–rough classifiers with feature selec-
tion and C4.5 algorithm.

β–RS+FS C4.5 v8 C4.5 v8+D
β CV10 Error CV10 error t-test CV10 error t-test

anneal 0.025 4.59 ±0.12 7.67 ±0.12 > 9.48 ±0.14 >
breast-c 0.025 4.00 ±0.27 5.26 ±0.19 > 9.48 ±0.14 >
colic 0.04 11.43 ±1.27 15.00 ±0.20 > 15.10 ±0.10 >
credit-a 0.0125 17.23 ±1.51 14.70 ±0.20 = 14.00 ±0.10 <
heart-c 0.05 17.51 ±1.59 23.00 ±0.50 > 21.70 ±0.60 >
hypo 0.0025 0.54 ±0.07 0.48 ±0.01 = 0.72 ±0.03 >
vehicle 0.35 38.43 ±1.36 27.10 ±0.40 < 31.50 ±0.50 <

within the same decision class. For each data set, the inducer takes the output
of the algorithm of feature subset selection, and learns a β–rough classifier from
the training set. The accuracy of the induced classified is then estimated using
ten-fold stratified cross validation (CV10).

Table 1 shows the reduction in the number of attributes that the algorithm
of feature selection achieves. The available cases for each data set, the number of
decision classes and condition attributes, together with the value of the β param-
eter used in the feature-selection process and the number of selected attributes,
are shown in this table. It should be emphasized that the algorithm of feature
selection gets an average reduction of the 42.1% (with a standard error of 5.4%)
in the number of attributes. This considerable reduction yet implies a greater
reduction in the dimension of feature space (taking into account that the dimen-
sion of feature space grows exponentially with the number of attributes), and
therefore, the proposed algorithm is beneficial as for the computational effort
that is necessary to induce β–rough classifiers.

Now then, an assessment of the selected features is also required in order to
validate the algorithm. In this sense, the CV10 accuracy of the β–rough classi-
fiers inducer after the feature selection process has been compared to the CV10
accuracy of the C4.5 algorithm [11]. Table 2 shows the CV10 errors (together
with the standard error) of the β-RS+FS classifier for each data set. The column
headed ’C4.5 v8’ shows the CV10 error of the version 8 of C4.5 algorithm, while
the column headed ’C4.5 v8+D’ shows the results of the same version but, once
the continuous variables of the data sets have been discretized according to the
algorithm of Fayyad and Irani. The values of the accuracy for the C4.5 algorithm
have been obtained from [12]. The table also shows the result of the t-test (with
a level of significance of the 5%) which is used to compare the CV10 error of the
β–RS+FS classifier and both versions of C4.5 algorithm. As it shown in Table
2 the error of the β–RS+FS is lesser than the C4.5 error in most cases. It is
then concluded that the proposed feature-selection algorithm leads to a ”good”
selection of condition attributes.

Summarizing, this paper proposes and tests a feature subset selection as a



pre-processing step to the induction of a classifier from data sets. The induced
classifiers are decision tables which are simplified according to a generalization
of the rough set theory, the VPRS model. The use of the VPRS model allows
that rules are not necessarily deterministic, in the sense, that a classification
error (over the training set) not greater than β (0 ≤ β < 0.5) is admissible.
The feature subset selection is based on the application of the MDL principle
as selecting criterion. The algorithm tries to establish an appropriate balance
between the complexity of the resulting subset of features and its accuracy when
it is used to predict the class label of a novel instance.
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