Analysis of Jade and JATLite Frameworks in
Web Domains

David Camacho, Ricardo Aler, Javier Hernando, and José M. Molina

Universidad Carlos III de Madrid, Computer Science Department, Avenida de la
Universidad n® 30, CP 28911, Leganés, Madrid, Spain

dcamacho@ia.uc3m.es

Abstract. Nowadays, there is an intensive research in different com-
puter science fields that are involved in the development of intelligent
systems that should work with the information stored in the World Wide
Web. Specially, and due to the characteristics of this domain, the Intel-
ligent Software Agent field is very active. This has produced a lot of
different tools, frameworks, reusable libraries, etc ...that can be used in
a free way to implement agent-based systems that will be applied over
different kind of domains. The previous situation has originated several
problems that could be summarized as: what are the agent technology
most appropriate to build an Internet Agent or Multi-Agent based sys-
tem?, which technology has the best scalability when the number of
agents grows?, what are the main technological characteristics of each
tool?, what kind of computer-aided design and development tools dif-
ferent frameworks provide?,...Some of the previous questions will be
analyzed in this paper. Due to the number of agent-based tools, we will
analyze two of those tools that are widely used by different researchers
in the fields of Software Agents and Multi-Agent Systems research. This
tools will be JADE and JATLITE. The paper will show an empirical eval-
uation of these tools, specially in the software reutilization, and in the
scalability problems.

1 Introduction

In recent years, there has been a lot of work in Web-based information tech-
nologies, a fast development of Internet, and many posibilities of managing the
stored knowledge. Because of this, Intelligent agents or Multi-Agent Systems
have become an important focus of interest [10]. Those research fields apply dif-
ferent techniques to implement adaptive and autonomous systems whose main
goal is to obtain, reason and manage the knowledge stored in the Web. There
is a wide range of posibilities to achieve the previous goals, from systems that
gather information from different electronic information sources and then other
agents integrate it into a possible solution [2,6,8], to systems that provide a
customizable answer to the user using his/her learned preferences [7].

Due to the increasing complexity of Internet, the related complexity of the
specialized systems that work retrieving and managing information from this

2 David Camacho, Ricardo Aler, Javier Hernando, and José M. Molina

source are increasing too. This generates several problems, that could be sum-
marized as:

— It is more difficult to build specialized Web-based agents.

— It is more complex to mantain and to reuse the deployed agents, and the
whole Multi-Agent System.

— When anything changes in the electronic sources (format, knowledge rep-
resentation or access information methods: CGI, servlets, asp...) the agents
need to adapt to these changes.

To solve, or to smooth, previous problems it have been developed tools, or
frameworks, that allow engineers to:

Design the roles and functionalities for each agent.

— Define the ontologies, or knowledge that will be shared, between them.

— Define and implement the communication process.

Help to implement the designed agents, and the whole Multi-Agent System.
Reuse software libraries to facilitate the software development phase.

Test and debug the implemented system.

The previous points have been achieved by different frameworks provid-
ing to engineers programming facilities like visual programming toolkits, doc-
umentation, reusable software libraries, etc...Actually it is possible to find
about half a hundred of those tools. There is a wide range of possibilities from
commercial products like: AgentBuilder, IBM Aglets Workbench, Grasshopper,
JACK Intelligent Agents,...to research products like: Jade, JATLite, MadKit,
Zeus,... When any designer needs to build his/her own Multi-Agent System, it
would be useful to have guidelines to select the most appropriate, to do that
several characteristics should be measured, like software reusability or compu-
tational performance for the implemented agents. The main goal of this paper
is to evaluate the performance of two of those frameworks in a specific domain.

The paper is structured as follows. Section 2 describes the main character-
istics of the two analyzed frameworks: JADE and JATLITE. Section 3 explains
in detail a Multi-Agent System that will be implemented with the two analyzed
frameworks and will be used to evaluate important aspects of both architectures.
Section 4 evaluates empirically the performance of both tools. Finally, Section 5
summarizes the conclusions and future lines of work.

2 Multi-Agents Frameworks Description

(From all the possible frameworks we have selected two popular tools used by
different engineers and research centers to develop its agent-based applications:

! http://www.multiagent.com /index.html

Analysis of Jade and JATLite Frameworks in Web Domains 3

1. JADE (Java Agent DEvelopment tool): Developed by Multimedia Tech-
nologies and servicies of Cselt (http://sharon.cselt.it/projects/jade).

2. JATLite (Java Agent Template, Lite): Developed by Stanford Center for
Design Research (http://java.stanford.edu/).

Common characteristics could be found for both frameworks like: they use
Java as main programming language to provide portability to the implemented
agents; both frameworks provide a set of packages of reusable java classes to
aid and to facilitate the implementation of the software agents; and finally, the
frameworks provide to engineers some graphical user utilities that will help to
build and test the Multi-Agent System.

2.1 Multi-Agent Framework: Jade

JADE (Java Agent DEvelopment framework) is a software framework fully im-
plemented in the Java language. It simplifies the implementation of multi-agent
systems through a middle-ware that claims to comply with the FIPA specifi-
cations [4] and through a set of tools that supports the debugging and deploy-
ment phase [1]. JADE agent platform tries to keep high the performance of a
distributed agent system implemented with the Java language. In particular,
its communication architecture tries to offer flexible and efficient messaging,
transparently choosing the best transport available and leveraging state-of-the-
art distributed object technology embedded within Java runtime environment.
JADE uses an agent model and a Java implementation that offer a good run-
time efficiency and software reuse. This agent model is more ”primitive” than
the agent models offered by other systems, but such models can be implemented
on the top of our ” primitive” agent model [1]. This framework is built using
the combination of two main products: a FIPA-compliant agent platform and a
package to develop Java agents.

Any application implemented using Jade uses the platform concept, all the
agents are run inside a set of containers that provides the communication be-
tween them. The “Jade Agent Platform” complies wiht FIPA97 specifications
and includes all those mandatories agents that manage the platform, that is:

— The Agent Management System (AMS), is the agent that exerts supervi-
sory control over access to and used of the platform (it is responsible for
authentication of resident agents and control of registrations).

— The Agent Communication Channel (ACC) is the agent that provides the
path for basic contact between agents inside and outside the platform (it is
the default communication method).

— The Directory Facilitator (DF) is the agent that provides a yellow page
service to the agent platform.

All of those agents are automatically activated at the agent platform start-
up. Figure 1 shows the software architecture of one Jade agent platform. These
agents platforms are distributed and can be split on several hosts. Any soft-
ware agent in Jade is implemented as one Java thread. The agent platform

4 David Camacho, Ricardo Aler, Javier Hernando, and José M. Molina

provides a Graphical User Interface (GUI) for the remote management, mon-
itoring and controlling status of the agents. This GUI has been implemented
as an agent, called RMA (Remote Monitoring Agent). The agent communica-
tion is performed through message passing, where FIPA-ACL is the language to
represent messages.

BROWSER

APPLET CONTAINER

-
z
i
Q
<

[acent]
[acente]
[acenT 3

4| Message Disp:

w
o
=

<| | Message Dispalche%
RMI Registry 3

[acents]

ACC

AGENT 5
Java RMI
AGENT 0
AGENT 8

AGENT

=
w
[}

Java RMI | Message Dlspatcheﬂ

Java RMI |

|
|
|
1
1
|
|
|
1
|
|
AGENT CONTAINER :
1
1
|
|
1
1
|
|
|
|
|

i
I

I

I

1

1

1

1

1

1

I

I

| | AGENT PLATFORM FRONT-END
I

1

1

1

! %]
1

I

I

I

|

I

1

Fig. 1. Jade Agent Platform Software Architecture[1].

The architecture of a Jade Agent platform is built using a set of “agent con-
tainers”, each agent container is an RMI server object? that locally manages a
set of agents. It controls the life cycle of agents by creating, suspending, resum-
ing and killing them. Several agent special containers are implemented for each
platform:

— the front-end role container: running management agents and representing
the whole platform to the outside world.

— a complete agent platform (AP): composed of several agent container.

— a special light-weigth container (Browser): which allows the execution of
agents within a Web Browser.

When this tool is selected to build the Multi-Agent System, it has both
advantages and disadvantages that could be summarized as:

— Jade does not have a powerful programming environment, this framework
only provides to the user a set of interfaces that allow him to debug the
implemented agents.

— One of the best characteristics in Jade is that it has an excellent documen-
tation, a good API to reuse the provided libraries to build new agents.

— Using Jade, a set of communication libraries (or packages) is provided to the
software engineers, those libraries allow them to isolate the communication
problem.

2 RMI or Remote Method Invocation is the Distributed Object Model provides by
Java language.

Analysis of Jade and JATLite Frameworks in Web Domains 5

2.2 Multi-Agent Framework: JATLite

JATLite (Java Agent Template, Lite) is a tool for creating agent-based systems.
JATLite is a package of programs written in Java language that allow users
to quickly create new software agents that communicate robustly over the
Internet [5,9]. This framework includes a message router that supports name
and password mechanism that lets agents move freely between hosts. JATLite
also provides a basic infrastructure, shown in Figure 2, in which agents register
with an Agent Message Router (AMR) using a name and a password.

Java
Standalonef

Applet AgentWrapper

YA

Agent KOML message
Infrastruct
rastructure JATLite
Agent Registars

Regiser/
Connect
Connect lizesage
Router

Fig. 2. JATLIite Agent Message Router and agent communication infrastructure[5].

This architecture allows the agents to connect or disconnet from the Internet,
send and receive messages, transfer files (with the FTP protocol) and generally
exchange information with other agents running in different computers. The
JATLite Agent Message Router is a specialized application which receives a
message from the registered agents and routes to the correct receiver.

JATLite provides a “template” for building agents that utilize a common
high-level language (KQML [3]) and protocol. This template provides the user
with a set of predefined Java classes that facilitate agent construction. Those
classes are provided in layers (Protocol Layer, Router Layer, KQML Layer, Base
Layer, Abstract Layer)?3, so the developer can decide what classes are needed for
the agent. General operations assumptions for a JATLite agent are:

— TCP/IP based connections.

— Agent communication through message passing, using the standard KQML
language.

— One live connection for each connected agent.

— A single address should be assigned to each agent.

3 SiMPLENEWS: A Meta-Searh News Engine

The aim of this section is to present the description of a MAS, called SIMPLE-
NEws. This MAS will be implemented using the two frameworks so that they

3 These layers are the JATLite APL

6 David Camacho, Ricardo Aler, Javier Hernando, and José M. Molina

User
Agent
Interface

- \ L > Control
| D &1 (Control Agent Control Agent| ! ontro
Lo e S 1 P 1 Agents
I EEm S | | Layer
| o, | - __ _ __ _ ________._
- I)

; Communication*

———————————————————————

i | 1 Web
requests/ 1. - m [WebAgent% [WebAgent% [\NebAgentl\ﬂ I Access
answers I ! Layer
[Py P — T__. Lay
i Retrieving | Retrieving i
Process Process
\ WORLD WIDE WEB |

query answer
(HTML)

Source Source Source

Fig. 3. SIMPLENEWS Architecture.

can be compared. It is important to remark that the goal of this system is not to
build a MAS that works with several WEB sources. The main goal, is to imple-
ment a MAS that can work in serveral WEB domains for different Multi-Agent
toolkits.

SIMPLENEWS is a meta-search engine that allows, by means of a UserAgent,
to search for news in a set of electronic newspapers. In this paper a very simple
topology was used (see Figure 3), where all of the Web agents solve the queries
sent by the UserAgent. The SIMPLENEWS engine is built using a set of spe-
cialized agents that are able to retrieve information from a particular electronic
newspaper. SIMPLENEWS can retrieve from the selected electronic sources, filter
the different answers from the specialized agents and show them to the user. As
Figure 3 shows, SIMPLENEWS architecture can be structured in serveral inter-
connected layers:

— UserAgent Interface. This agent only provides a simple Graphical User Inter-
faces to allow users to requests for news from the selected electronic papers.
SIMPLENEWS uses a UserAgent that provides to the users a simple graphical
user interface for making queries. The number of solutions requested, and the
agents that will be consulted. The interface used by this agent allows to the
user to know: The actual state of the agents (active, suspended, searching,
finished), and the messages and contents sent between the agents. Finally the
entire requests retrieved by the agents are analyzed (only different requests
are taken into account) and the UserAgent builds an HTML file, which is
subsequently displayed to the user.

— Control Access Layer. Jade, JATLite (or any Multi-Agent architecture) need
to use specific agents to manage, running or controling the whole system
(AMS, ACC ,DF in Jade or AMR in JATLite), this level represents the
set of necessary agents (for the architecture analyzed) that will be used by
SIMPLENEWS to work correctly. This layer performs the differences from the
two versions of SIMPLENEWS implemented (from Jade framework and from
JATLite).

— Web Access Layer. Finally, this layer represents the specialized WebAgents
which retrieve information from the specific electronic sources in the Web.

Analysis of Jade and JATLite Frameworks in Web Domains 7

The meta-search engine includes a UserAgent and six specialized WebAgents.
The Web specialized agent can be classified in the next categories:

1. Financial Information. Two WebAgents was implemented and they will spe-
cialized in Ezpansion * and CincoDias ® financial newspapers.

2. Sports information. Other two WebAgents specialized in Marca ¢ and Futvol.com

sportive papers.
3. General information. Finally other two WebAgents was implemented to re-
trieve information from; El Pais 8 and El Mundo ° newspapers.

The selected electronic sources are Spanish to allow a better evaluation in the
retrieving process, because is difficult to evaluate the performance of a particular
WebAgent if it works using a query in a different language. Other reason to select
previous sources was that most of those sources are widely used in Spain, so the
information stored in them should be enough to test a MAS built with those
WebAgents.

4 Experimental Evaluation

In this section, we report the results of several experiments, using both versions of
SIMPLENEWS to evaluate the scalability and the performance (in time response)
for each framework when the number of those agents increases.

4.1 Experimental Setup

Various empirical tests to evaluate the general performance of the MAS have
been implemented. A set of 432 queries to each architecture were made, so 1728
requests were made to obtain the empirical results shown in the next section.
The following variables were measured:

— Independent variables:

e Number of Web agents used: from only one Web agent, to six specialized
Web agents.

e Number of requested documents: from only one document to fifty docu-
ments: 1, 5, 10, 15, 20, 30, 40 and 50 news articles requested.

e The user query that will be searched by the agents.

— Dependent (measured) variables:

e Response time that the UserAgent spent to answer the question.
e Number of news articles retrieved.

* hitp:/ /www. ezpansion. es
® http://www. cincodias.es
5 http://www.marca.es

7 http://www. futvol.com

& http://www.elpais.es

® http://www.elmundo.es

7

8 David Camacho, Ricardo Aler, Javier Hernando, and José M. Molina

The same questions were made to each configuration. The following tests
were made, using the following configurations in SIMPLENEWS:

— Ounly one Web agent (better Web agent in the retrieving news process).

— Two Web agents specialized in different electronic newspapers. It was used
an agent specialized in general information (ElPais-WebAgent), and other
agent specialized in financial information (Ezpansion- WebAgent).

— Three Web agents: ElPais- WebAgent, Expansion- WebAgent, Marca- WebAgent
(the best specialized agent in the different information sources).

— Finally, all the Web agents developed will be used to measure the perfor-
mance of SIMPLENEWS.

4.2 Scalability and Performance Evaluation in Jade and JATLite

The experiments in this section display the average time to answer questions
and the number of articles retrieved for each architecture.

Average number of retrieved documentsiResponse time: Average number of retrieved documents/Response time: 2
1 WebAgent WebAgents

/Response Time

Answers / Response Time

nswers

Humber of requested documents Number of requested documents

ot g mmine e ———s

Fig. 4. Average number of retrieved documents/ response time for each architecture
using: (a) One and (b) Two specialized Web agents.

Figure 4 (a) shows the performance for each architecture when the best
Web agent (in the searching and retrieving process) is used. It can be seen
how Jade has a good performance. Therefore, only two agents are considered
in the system, ElPais- WebAgent and the UserAgent (we are not considering the
Control Agents Layer in the System). When two WebAgents (ElPais- WebAgent):
general information, and Ezpansion- WebAgent: financial information) were used,
the performance of Jade SIMPLENEWS version is still better, Figure 4 (b) shows
the reply time obtained for the different questions asked by the user.

The empirical results shown in Figure 5 (a) were obtained using ElPais-
WebAgent, Expansion-WebAgent,and Marca- WebAgent. Figure 5 (a) shows how

Analysis of Jade and JATLite Frameworks in Web Domains 9

Average number of retrieved decuments/Response Average number of retrieved documents/Response time:
time: 3 WebAgents 6 WebAgents

0z 025

=1
T

o
@

Answers / Response Time
o
o= =
= =

=}

1 5 10 15 20 a0 40 50 1 5 10 18 20 30 40 a0

Number of requested documents Number of requested documents
—+—JADE —s— JATLITE —+— JADE = JATLITE

Fig. 5. Average number of retrieved documents/ response time for each architecture
using: (a) Three and (b) Six specialized Web agents.

the behavior for the JATLite and JADE architectures are still very linear, and
how the best performance is achieved again by the Jade architecture. However,
Figure 5 (b) shows the obtained performance when all the possible WebAgents
are used, and how, in this case, JATLite MAS has a better performance with
this configurations of SIMPLENEWS .

Finally, it can be observed a linear behavior for the two versions of SIMPLE-
NEWSs implemented, and the performance is similar. The Jade architecture has
a good performance, but when the number of agents increases to seven special-
ized agents (one UserAgent and six WebAgents) the performance of the MAS is
9.7% under the peformance of JATLite architecture (in the worst situation for
40 news articles requested).

5 Conclusions and Future Work

Although there are many different frameworks to build multi-agent systems, not
much effort has been spent in comparing them empirically. In this paper, we
present a simple WEB domain which is used as a common domain to test two
different M AS frameworks: Jade and JATLite. In summary, our conclusions are:

— The Jade architecture allows a quicker implementation of MAS and provides
excellent documentation if simple agents are implemented (this framework
provides a good API to help to programming software agents). However the
underlying technologies (RMI, IIOP, etc...) are difficult to understand and
to use.

— JATLite has a similar performance to Jade, however, currently development
is slower because it has a poor documentation and development support
tools.

10 David Camacho, Ricardo Aler, Javier Hernando, and José M. Molina

— The two frameworks scalate well, but when the number of agents grows,
Jade complex architecture penalizes the performance of the whole multi-
agent system (shown in the last set of experiments).

In the future, we will use the SIMPLENEWS domain to compare other ar-
chitectures '°, and will increase the number of agents to check scalability. We
encourage other researchers to test their architectures in this domain to have
comparative results in a real task.

Acknowledgements

The research reported here was carried out as part of the research project funded
by CICYT TAP-99-0535-C02.

References

1. Bellifemine, F., Poggi, A., Rimassa, G. JADE-A FIPA-Compliant agent framework.
Proceedings of the 4th International Conference on the Practical Applications of
Agents and Multi-Agent Systems (PAAM-99). pp. 97-108, 1999.

2. Fan, Y., Gauch, S.:Adaptive Agents for Information Gathering from Multiple, Dis-
tributed Information Sources. Proceedings of 1999 AAAI Symposium on Intelligent
Agents in Cyberspace, Stanford University, March 1999.

3. Finin, T., Fritzson, R., Mackay, D., McEntire, R.: KQML as an Agent Communica-
tion Language. In Proceedings of the Third International Conference on Information
and Knowledge Management (CIKM94), pages 456-463. New York: Association of
Computing Machinery (1994).

4. Foundation for Intelligent Agents (FIPA). Specifications 1998. Available from
http://www.fipa.org/specifications.

5. Jeon H., Petrie, C., Cutkosky, K.R. JATLite: A Java Agent Infrastructure with
Message Routing. IEEE Internet Computing. pp. 87-96, March/April 2000.

6. Lambrecht, E., Kambhampati, S.: Planning for Information Gathering: A tutorial
Survey. ASU CSE Techincal Report 96-017. May (1997).

7. Lieberman, H.: Letizia: An Agent That Assists Web Browsing. International Joint
Conference on Artificial Intelligence (IJCAI95), August (1995) 924-929.

8. Knoblock, C.A., Minton, S., Ambite, J.L., Muslea, M., Oh, J., Frank, M.: Mixed-
Initiative, Multi-source Information Assistants. The Tenth International World
Wide Web Conference (WWW10). ACM Press. May 1-5. (2001).

9. Petrie, C. Agent-based Engineering, the Web, and Intelligence. IEEE
Expert, 11 (6), pp. 24-29, December, 1996. Also available online at
http://cdr.stanford.edu/NextLink /Expert.html.

10. Sycara, K., Decker, K. Distributed Intelligent Agents. IEEE Expert. 11(6), pp.
36-46, December, 1996.

10 We have already started evaluating the ZEUS and SkeletonAgent frameworks.

