
Software Design using Analogy and WordNet 

Paulo Gomes, Francisco C. Pereira, Nuno Seco, Paulo Paiva, Paulo Carreiro,  
José L. Ferreira, Carlos Bento 

CISUC – Centro de Informática e Sistemas da Universidade de Coimbra. Departamento de 
Engenharia Informática, Polo II, Universidade de Coimbra. 3030 Coimbra 

{pgomes, camara}@dei.uc.pt, {nseco, paiva, car-
reiro}@student.dei.uc.pt, {zeluis, bento}@dei.uc.pt    

http://rebuilder.dei.uc.pt 

Abstract. Software design is a complex cognitive task. Given the lack of con-
sistent and general methodologies, it often demands creative capacities that 
sometimes bring our insight closer to arts than to an engineering field. Much of 
the success obtained by software engineers in their designs, comes from their 
acquired know-how. One way to improve their work, is by providing CASE 
tools capable of assisting the software design task in two significant ways: stor-
ing past designs, and providing cognitive support for design space exploration. 
In this paper, we focus on the second aspect, presenting an approach to soft-
ware design using analogy. We also describe how analogical reasoning can be 
combined with a general ontology – WordNet. This ontology provides object 
classification, and a conceptual network, in which we base our similarity map-
pings. An experimental study of the analogy-WordNet combination is also pre-
sented in this paper.  

Keywords: Analogy, WordNet, Software Design, Case-Based Reasoning 
 

Paper Track 
 
Conference Topics: Reasoning Models, Natural Language Processing, Reuse of 
Knowledge, Case-Based Reasoning 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Motivation and Goals  

Software development usually comprises five different phases: analysis, design, cod-
ing, unit testing, and integration [1]. The analysis or specification phase identifies 
what the software must do. The design phase defines, at a conceptual level, how it is 
going to be done (defines the software behavior and structure). The goal of the coding 
phase is to implement the software modules. The aim of the unit test phase is to verify 
that all functions in each software module are according to the definitions stated in the 
design phase. The integration phase is to verify that the implemented software con-
forms properly with what was defined in the specification phase. 

In our work we focus in the design phase due to various factors: it is an important 
phase, because most of the decisions made at this stage will constraint all the other 
phases; it is also a more complex task than the analysis phase, requiring more exper-
tise and know-how from the developers; there are few computational tools that give 
cognitive support to designers; and knowledge at this phase is at a more abstract level 
and less formal, than the coding phase.  

Analogy [2-5] is regarded as one important process in design [6]. It comprises the 
mapping between a source design and a target design. It can be efficiently used for 
transferring ideas across different domains. This also enables the exploration of areas 
of the design space that are not explored usually, allowing the generation of alterna-
tive designs. These designs can stimulate or offer the designer new ideas, and possibly 
better design solutions. 

In this paper we present an approach to software design using analogy, which is in-
tegrated in a Computer Aided Software Engineering (CASE) tool named 
REBUILDER. This tool is based on Case-Based Reasoning [7, 8] and comprises a 
Knowledge Base with several types of knowledge, including WordNet, a general on-
tology. This paper presents the experimental results obtained with our approach in the 
study of the relation between WordNet and the analogy mechanism developed. 

The next section describes related work on analogy and in special in the software 
development domain. Then we present our approach and section 4 describes the ex-
perimental results obtained. Section 5 finishes with a discussion. 

2 Analogy 

Analogical reasoning [2-5] is a widely used problem solving method. It consists in the 
transference of knowledge from one domain to a different domain. This transference is 
based on similarities between past problems and the new problem. The transferred 
knowledge is then used to generate solutions for the new problem. The main benefit of 
analogical reasoning is its capability to transfer knowledge from one domain to a 
different domain – cross-domain transfer of knowledge. It is this cross-domain transfer 
that enables the generation of new designs, and can be considered as an explorative 
process. 

There are some research works that address the area of analogy applied to software 
reuse. From these we point out the work of Maiden and Sutcliffe in Ira [9]. Ira is a 



CASE tool based on analogy that enables the reuse of software specifications. It pro-
vides user support for the task of system specification. Specification reuse involves 
three processes: categorization of a new problem, selection of candidate specifica-
tions, and adaptation of the selected specification to the new domain. Ira addresses 
these three issues by: obtaining the description of the new target problem from the 
software engineer; controlling the interaction with the user during selection and adap-
tation of an analogous specification; and reasoning with critical problem features to 
match new problems. While Ira is intended to the specification phase, REBUILDER 
works in the design phase. 

Jeng and Cheng [10] use formal specifications to represent software components 
and use analogy to retrieve them. They base their approach on a software formal 
specification, which is hard to be dealt by humans. Software components can be re-
quirements, design knowledge, code segments, or test plans. Thus their tool targets all 
the phases in software development, which makes the system hard to manage due to 
the different level of abstraction and specificity of each type of knowledge. 

Spanoudakis [11] developed a computational model of similarity for analogical 
software reuse based on conceptual descriptions of software artifacts. Their approach 
is based on semantic similarity of software objects. ROSA [12] is also a CASE tool 
that reuses object-oriented specifications using analogy.  

3 Our Approach to Analogy 

Our approach to software design reuse with analogy is integrated in a CASE tool 
based on CBR, named REBUILDER. The main goal of REBUILDER is to provide 
intelligent support for software engineers during the design phase. This includes: re-
trieval of past designs based on similarity concepts; suggestion of new designs; verifi-
cation of design constraints; evaluation of design properties; and learning new design 
knowledge. Analogy is one of the modules in the CBR engine (see  Figure 1).  

REBUILDER is intended to be used within a corporation environment, centralizing 
the corporation past designs in its knowledge base. There are two types of users inter-
acting with the system. Software designers, using REBUILDER as an UML editor, 
and an administrator with the main task of keeping the knowledge base (KB) consis-
tent and updated. 

In order for a CASE tool to be used, the design language must be intuitive and hu-
man-centred. This is also true for software design where it is common the use of visual 
languages to represent designs. One worldwide software design language is the Uni-
fied Modelling Language [13], best known as UML. This language provides a repre-
sentation for all the software development phases. By choosing UML as the represen-
tation language, we are providing the user with a design standard.  

Figure 1 shows the architecture of REBUILDER. It comprises four main modules: 
UML editor, KB manager, KB, and CBR engine. The UML editor is the system front-
end for the software designer, comprising the working space for design. The KB man-
agement is the interface between the KB and the system administrator. It provides 



access to various sub modules of knowledge, allowing the administrator to add, delete, 
or change knowledge from the KB, and fine-tuning it. 

Figure 1 - The architecture of REBUILDER. 

The KB comprises four modules: data type taxonomy, case library, case indexes, 
and WordNet. The data type taxonomy provides is-a relations between data types used 
in UML. This structure is used when the system has to compute the similarity between 
data types. The case library stores the design cases, each one representing a software 
design. They are stored in UML files created by the editor. Though UML has several 
types of diagrams, REBUILDER uses only class diagrams for reasoning, since it is the 
most used diagrams. The case indexes are used for case retrieval, allowing a more 
efficient retrieval. WordNet is a lexical reference system [14], used in REBUILDER 
as a general ontology that categorizes case objects.  

The CBR engine performs all the inference work in REBUILDER. It comprises 
five sub modules: retrieval, analogy, adaptation, verification, and learning. The re-
trieval module searches the case library for designs or design objects similar to the 
query. The most similar ones are presented to the user, allowing the user to reuse these 
designs or parts of them. Retrieved designs can also suggest new ideas to the designer, 
helping him to explore the design space. The analogy module uses the retrieval mod-
ule to select the most similar designs from the case library, and then maps them to the 
query design. This module is the subject of this paper, and it will be described in more 
detail in the next sections. The resulting mapping establishes the knowledge transfer 
from the old design to the query design. Analogy goes further than case retrieval, 
creating new designs. The adaptation module can be used to adapt a past design (or 
part of it) to the query design using design composition. The main usage of this mod-
ule is in combination with retrieval. The verification module checks the current design 
for inconsistencies. The learning module acquires new knowledge from the user inter-
action, or from the system interaction. The next subsections describe the WordNet 
ontology, since it is needed to know what knowledge is in the WordNet, and then 
describe the analogy module. 

3.1 WordNet 

WordNet is used in REBUILDER as a common sense ontology. It uses a differential 
theory where concept meanings are represented by symbols that enable a theorist to 
distinguish among them. Symbols are words, and concept meanings are called synsets.  

 

UML 
Editor 

Knowledge 
Base Manager 

Software 
Designer 

KB 
Administrator 

Knowlegde Base 

Case 
Indexes 

WordNet 

Data Type 
Taxonomy 

Case Library CBR Engine 

Retrieval 

Analogy 

Adaptation 

Verification 

Learning 



A synset is a concept represented by one or more words. If more than one word can 
be used to represent a synset, then they are called synonyms. But there is also another 
word phenomenon important for WordNet: the same word can have more than one 
different meaning (polysemy). For instance, the word mouse has two meanings, it can 
denote a rat, or it can express a computer mouse. 

WordNet is built around the concept of synset. Basically it comprises a list of word 
synsets, and different semantic relations between synsets. The first part is a list of 
words, each one with a list of synsets that the word represents. The second part, is a 
set of semantic relations between synsets, like is-a relations (rat is-a mouse), part-of 
relations (door part-of house), and many other relations. In REBUILDER we use the 
word synset list and four semantic relation: is-a, part-of, substance-of, and member-of. 
Synsets are classified in four different types: nouns, verbs, adjectives, and adverbs. 

REBUILDER uses synsets for categorization of software objects. Each object has a 
context synset which represents the object meaning. In order to find the correct synset, 
REBUILDER uses the object name, and the names of the objects related with it, 
which define the object context. The object’s context synset can then be used for 
computing object similarity (using the WordNet semantic relations), or it can be used 
as a case index, allowing the rapid access to objects with the same classification. 

3.2 The Analogy Module 

Analogical reasoning is used in REBUILDER to suggest class diagrams to the de-
signer, based on a query diagram. The analogy module has three phases: identifying 
diagrams candidate for analogy, mapping the candidate diagrams, and creation of new 
diagrams by knowledge transfer between the candidate diagram and the query. 

Candidate selection is the first phase, and is the most important one. Selected can-
didates must be appropriate, otherwise the whole mapping phase can be at risk. Most 
of the analogies that are found in software design are functional analogies, that is, the 
analogy mapping is done using the functional similarity between objects. Since func-
tional similar objects are categorized in the same branch (or near) in the WordNet is-a 
trees, and the retrieval algorithm uses these semantic relations to retrieve objects, the 
analogy module uses the retrieval module for this first phase. Thus, the analogy mod-
ule benefits from a retrieval filtering based on functional similarity. 

The second phase of analogy is the mapping of each candidate to the query dia-
gram, yielding an object list correspondence. This phase relies on two alternative 
algorithms: one based on relation mapping, and the other on object mapping, but both 
return a list of mappings between objects.  

The relation-based algorithm uses the UML relations to establish the object map-
pings. It starts the mapping selecting a query relation based on an UML heuristic (in-
dependence measure), which selects the relation that connects the two most important 
diagram objects. The independence measure is an heuristic used to assign to each 
diagram object a value based on UML knowledge that reflects an object’s independ-
ence in relation to all the other diagram objects. Then it tries to find a matching rela-
tion on the candidate diagram. After it finds a match, it starts the mapping by the 



neighbour relations, spreading the mapping using the diagram relations. This algo-
rithm maps objects in pairs corresponding to the relation’s objects. 

The object-based algorithm starts the mapping selecting the most independent 
query object, based on an UML independence heuristic. After finding the correspond-
ing candidate object, it tries to map the neighbour objects of the query object, taking 
the object’s relations as constraints. Both algorithms satisfy the structural constraints 
defined by the UML diagram relations. Most of the resulting mappings are only par-
tial, so, a way of mapping ranking is needed, see section 3.3.  

An important issue in the mapping stage is which objects to map. Most of the times, 
there are several candidate objects for mapping with the problem object. In order to 
solve this issue, we have developed a metric that is used to choose the mapping candi-
date. Because we have two mapping algorithms, one based on relations and another on 
objects, there are two metrics: one for objects, and other for relations. Sections 3.4 
and 3.5 will present these metrics in more detail.  

The final phase is the generation of new diagrams using the established mappings. 
For each mapping the analogy module creates a new diagram, which is a copy of the 
query diagram. Then using the mappings between the query objects and the candidate 
objects, the algorithm transfers knowledge from the candidate diagram to the new 
diagram. This transference has two steps: first there is an internal object transference, 
and then an external object transference. 

In the internal object transference, the mapped query object gets all the attributes 
and methods from the candidate object that were not in the query object. This way, the 
query object is completed by the internal knowledge of the candidate object. The 
second step transfers neighbour objects and relations from the mapped candidate ob-
jects to the query objects from the new diagram. This transfers new objects and rela-
tions to the new diagram, expanding it. 

3.3 Criteria for Mapping Ranking 

The analogy algorithm uses four different criteria for ranking the mappings: 
• Based on the number of mapped objects:  

PObjs

K
 

(1) 

• Based on the independence sum of mapped objects in the problem: 

)(

)(

PObjsIndSum

sMappedPObjIndSum
 

(2) 

• Based on the independence sum of mapped objects in the problem and the 
case:  



∑
∑∑

=

==

−−
k

i k

j j

i
k

j j

i

CM

CM

PM

PM
1

11

1  

(3) 

• Based on the number of mapped objects and independence sum:  



















−−+ ∑
∑∑

=

==

k

i k

j j

i
k

j j

i

CM

CM

PM

PM
w

PObjs

k
w

1

11

1*2*1  

(4) 

Where K is the number of mapped objects. PObjs is the number of objects in the 
Problem. IndSum(MappedPObjs) is the Sum of the independence of mapped objects 
in the problem. IndSum(PObjs) is the Sum of the independence of objects in the prob-
lem. PMi is the independence value of mapped problem object i. CMi is the independ-
ence value of mapped case object i. w1 = 0.5 ; w2 = 0.5. What ranking to use is up to 
the user to select, the default is the first one. 

3.4 Similarity Metric for Mapping Objects 

The similarity metric for mapping two objects (A and B) is based on three factors. The 
first is the distance between A’s synset and B’s synset in the WordNet ontology (D1). 
For the second factor, the Most Specific Common Abstraction (MSCA) between A 
and B synsets must be found. The MSCA is basically the most specific synset which is 
an abstraction of both object’s synsets. Considering the distance between A’s synset 
and MSCA (D(A,MSCA)), and the distance between B’s synset and MSCA 
(D(B,MSCA)), then the second factor is the relation between these two distances (D2). 
This factor tries to account the level of abstraction of concepts. The last factor is the 
relative depth of MSCA in the WordNet ontology (D3), which tries to reflect the ob-
jects’ level of abstraction. The concrete formulas are: 

• Similarity metric between A and B: 

MSCA exists***

MSCAexist not  does1

332211 ⇐++
⇐−

DwDwDw
 

(5) 

Where w1, w2 and w3 are weights associated with each factor, the values are se-
lected based on empirical work and are: 0.55, 0.3, and 0.15. 

DepthMax

MSCABDMSCAAD
D

*2

),(),(
11

+
−=  

(6) 

Where DepthMax is the maximum depth of the is-a tree of WordNet. It’s current 
value is 14. 



BA
MSCABDMSCAAD

MSCABDMSCAAD
D

BAD

≠⇐
+

−
−=

=⇐=

22
2

2

),(),(

),(),(
1

1

 

(7) 

DepthMax

MSCADepth
D

)(
3 =  

(8) 

Where Depth(MSCA) is the depth of MSCA in the is-a tree of WordNet. 

3.5 Similarity Metric for Mapping Relations 

The previous metric is mainly used in the object-based mapping algorithm, where the 
best candidate object must be selected for mapping with a problem object. For the 
relation-based mapping algorithm, the selection metric is not for ranking objects, but 
for ranking relations. This metric is based on the object similarity metric, but takes 
into account the relation, and the relation’s objects. The metric for ranking mapping 
relations is: 

Suppose that the two relations are R1 (A-B) and R2 (C-D), and: MAB is the MSCA 
between A and B, MAC is the MSCA between A and C, MBD is the MSCA between 
B and D, and MCD is the MSCA between C and D. 

If  (MAB exists) and (MAC exists) and (MBD exists) and (MCD exists) Then the 
metric value is: 

),(*),(*),(* 21321 RRRASimwDBASimwCAASimw ++  (9) 

Where ASim(A,C) is the similarity metric for mapping objects A and C (described 
in section 3.4). Weights w1, w2 and w3 are: 0.25, 0.25 and 0.5. RASim(R1,R2) is given 
by: 

















+
+=

),(*3

),(*

),(*

),(

21

212

211

21

RRDepthw

RRAnglew

RRLengthw

RRRASim  

(10) 















+

++

+

−+

−=

22

22

22

22

21

),(),(

),(),(

),(),(

),(),(

1),(

MCDDDMCDCD

MABBDMABAD

MCDDDMCDCD

MABBDMABAD

RRLength  

(11) 



22

22

21

),(),(

),(

),(),(

),(

1),(

MCDDDMCDCD

MCDCD

MABBDMABAD

MABAD

RRAngle

+

−
+

−=  

(12) 

DepthMax

DPCPBPAP
RRDepth

*2

)()()()(
1),( 21

−−+
−=  

(13) 

Where w1, w2 and w3 are weights with values: 0.25, 0.25 and 0.5. Length(R1,R2) is a 
factor that reflects the distance between objects in the relations. Angle(R1,R2) reflects 
the angle between the objects and the respective MSCAs. Depth(R1,R2) reflects the 
depth in the WordNet, or in other words the abstraction level of objects. 

If (MAC exists) and (MBD exists) and (MCD not exists) and (MAB not exists) 
then the metric value is: 

2

),(),( DBASimCAASim +
 

(14) 

Else the metric value is –1, meaning that the relations have no similarity. 

4 Experimental Results 

The KB used comprises a case library with 60 cases. Each case comprises a package, 
with 5 to 20 objects (total number of objects in the knowledge base is 586). Each 
object has up to 20 attributes, and up to 20 methods.  

The factor that constraints the analogy mapping is the value used as threshold for 
mapping objects and relations. This threshold is the minimum value allowed for a 
mapping to happen (values near zero indicate that everything can be mapped). We 
also wanted test the two developed mapping algorithms: relation-based and object-
based.  

Each of the 60 cases were used as a problem, and we used 16 threshold/algorithm 
combination, yielding 960 runs. In each of these runs, the five best solutions for each 
mapping ranking criteria (see section 3.3), coming from different cases, were gath-
ered. This yields 20 solutions by run. The data gathered for each solution was: number 
of mappings, distance of mapped objects (in the WordNet), depth (in WordNet) of the 
MSCA between mapped objects, and percentage of correct mappings by solution. This 
last figure was obtained by human evaluation of what is considered a correct mapping. 
From these gathered data we derived the number of correct mappings by solution. 

The results obtained for the average percentage of correct mappings is presented in 
Figure 2. From these results it is clear that the object-based mapping yields more ac-
curate mappings and that the best threshold value is 0.8 for object-based mapping and 
0.7 for relation-based mapping. 



45.00

55.00

65.00

75.00

85.00

95.00

Relation-Based
Mapping

46.54 46.12 46.71 54.37 56.91 64.55 64.00 49.93

Object-Based Mapping 54.35 54.39 54.66 60.04 60.61 77.35 93.11 78.63

0.00 0.25 0.50 0.55 0.60 0.70 0.80 0.90

 

Figure 2 - Average %of correct mappings. 

In Figure 3 the results for the average percentage of correct mappings by mapping 
ranking criteria. The Mapping criteria corresponds to formula (1), Independence to 
formula (2), Mixed to (3) and Weighted to (4). From these results it can be seen that 
the first criteria is the best one in all situations. Then criteria Weighted is slightly 
better than Mixed, and the last one is the independence criteria. 

50.00

60.00

70.00

80.00

90.00

Mapping  60.46  63.02  75.77  81.06  71.56 

Independence  53.19  54.58  65.47  78.21  54.68 

Mixed  57.52  58.54  71.30  76.94  64.71 

Weighted  57.65  58.91  71.25  78.02  66.17 

0.55 0.6 0.7 0.8 0.9

 
Figure 3 - Average % of correct mappings by ranking criteria, and by threshold. 

5 Discussion  

This paper presents an approach to analogy for software design. We integrate this 
approach with a CASE tool based on a CBR framework, which enables the explora-
tion the design space through cases. We describe the results of an experimental study 
that relate the correct percentage of mappings with some mapping properties.  

One of the main advantages of using analogy in a CASE tool for software design, is 
the opportunity of exploring design space regions not usually accessed by the de-



signer. This can have two effects: boosting the designer’s creativity, and generating 
novel designs, depending if the system does not provide a complete solution or it can 
generate the solution by itself. The integration of a common ontology like WordNet, 
has provided the analogy mechanism with a far more broad range of action, enabling it 
to establish cross-domain transfer of ideas. 

There are some limitations in our approach. One of them is the need for good com-
putational resources. This is due to the complexity of the reasoning processes in-
volved, and also to the size and complexity of WordNet. Other limitation, is the gen-
eration of bizarre solutions, which is a normal effect of an exploration mechanism. 
This can be compensated with the insertion of the verification module in the analogi-
cal reasoning process.  

Acknowledgments 

This work was supported by POSI - Programa Operacional Sociedade de Informação 
of Portuguese Fundação para a Ciência e Tecnologia and European Union FEDER, 
under contract POSI/33399/SRI/2000, and by program PRAXIS XXI. 

References 
1. Boehm, B., A Spiral Model of Software Development and Enhancement. 1988: IEEE Press. 
2. Gentner, D., Structure Mapping: A Theoretical Framework for Analogy. Cognitive Science, 

1983. 7(2): p. 155-170. 
3. Hall, R.P., Computational approaches to analogical reasoning; A comparative analysis. 

Artificial Intelligence, 1989. 39(1): p. 39-120. 
4. Holyoak, K.J. and P. Thagard, Analogical Mapping by Constraint Satisfaction. Conitive 

Science, 1989. 13: p. 295-355. 
5. Thagard, P., et al., Analog Retrieval by Constraint Satisfaction. Artificial Intelligent, 1990. 

46: p. 259-310. 
6. Gero, J., Computational Models of Creative Design Processes., in Artificial Intelligence and 

Creativity, T. Dartnall, Editor. 1994, Kluwer Academic Publishers. 
7. Kolodner, J., Case-Based Reasoning. 1993: Morgan Kaufman. 
8. Maher, M.L., M. Balachandran, and D. Zhang, Case-Based Reasoning in Design. 1995: 

Lawrence Erlbaum Associates. 
9. Maiden, N. and A. Sutcliffe, Exploiting Reusable Specifications Through Analogy. Commu-

nications of the ACM, 1992. 35(4): p. 55-64. 
10. Jeng, J.-J. and B. Cheng. Using Analogy and Formal Methods for Software Reuse. in IEEE 

5th International Conference on Tools with AI. 1993. 
11. Spanoudakis, G. and P. Constantopoulos. Similarity for Analogical Software Reuse: A 

Computational Model. in 11th European Conference on Artificial Intelligence. 1994. Ame-
sterdam, The Netherlands: John Wiley & Sons. 

12. Tessem, B., et al., ROSA = Reuse of Object-oriented Specifications through Analogy: A 
Project Framework, 1994, Department of Information Science, University of Bergen. p. 23. 

13. Rumbaugh, J., I. Jacobson, and G. Booch, The Unified Modeling Language Reference 
Manual. 1998, Reading, MA: Addison-Wesley. 

14. Miller, G., et al., Introduction to WordNet: an on-line lexical database. International Jour-
nal of Lexicography, 1990. 3(4): p. 235 - 244. 


