Frequent sets with negative information

I. Fortes', J.L. Balcizar? and R. Morales?

! Dept. Applied Mathematic, E.T.S.I. Informética, Univ. Malaga. Campus Teatinos.

29071 Mélaga, Spain

ifortes@ctima.uma.es

2 Dept. LSI, Univ. Politécnica de Catalunya. Campus Nord.
08034 Barcelona, Spain
balqui@lsi.upc.es
3 Dept. Languages and Computer Science, E.T.S.I. Informética, Univ. Mélaga.
Campus Teatinos. 29071 Malaga, Spain
morales@lcc.uma.es

1 Introduction

One of the most relevant subroutines in applications of data mining is finding
frequent itemsets within the transactions in the database. This task consists
of finding highly frequent itemsets, by comparing their frequency of occurrence
within the given database with a given parameter o. This problem can be solved
by the well-known Apriori algorithm [2].

The frequent sets that result from this task can be used then to discover
association rules that have support and confidence values no smaller than the
user-specified minimum thresholds [1], or to solve other related Knowledge Dis-
covery problems [9]. We do not discuss here how to form association rules from
frequent itemsets, nor any other application of these; but focus on the perfor-
mance of that very step, finding highly frequent patterns, whose complexity
dominates by far the computational cost of many such applications.

Here we considered the case where each transaction of the database is a
binary-valued function of the attributes. The difference with the itemsets view
is that now we look for patterns where the non-occurrence of an item is important
too. This is formalized in terms of partial functions, which, on each item, may
include it (value 1), exclude it (value 0), or not to consider it (undefined).

It is known that direct use of the Apriori algorithm on real life data frequently
come up with extremely large numbers of frequent sets consisting “only of zeros”;
for example, in the prototypical case of market basket data, certainly the number
of items is overwhelmingly larger than the average number of items bought, and
this means that the output of any frequent sets algorithm will contain large
amounts of information of the sort “most of the times that scotch is not bought,
bourbon is not bought either, with large support”. If such negative information
is not desired at all, the original Apriori version can be used; but there may
be cases where limited amounts of negative information are deemed useful, for
instance looking for alternative products that can act as mutual replacements,
and yet one does not want to be forced into a search through the huge space of
all partial functions.

We are interested in producing algorithms that will provide frequent “item-
sets” that have “missing” products, but in a controlled manner, so that they are
useful when having some missing products in the itemsets is important but not
so much as the products that are in the itemsets.

Here we present a certain theory on a certain formal language according to
a certain predicate that is monotone on a generalization/specialization relation.
We present results to obtain the variant of the Apriori algorithm that, if sup-
plied with a limit £ on the maximum number of negated attributes desired in
the output frequent sets, will take advantage of this fact, and produce frequent
itemsets for which this limit is obeyed. Of course, it does so in a much more
efficient way than just applying Apriori and discarding the part of the output
that does not fulfill this condition. First, because the exploration is organized in
a way that naturally reflects the condition on the output. Second, because we
know that items may be, or not be, in each itemset, but not both implies com-
plementarity relationships between the frequencies of “itemsets” that contain, or
do not contain, a given item. We use these relationships to find out frequencies
of some “itemsets” without actually counting them, thus saving computational
work.

We propose bottom-up algorithms in which the exploration of facts corre-
sponding to items not being in the transactions is delayed with respect to positive
information of items being in the transactions. We have called these algorithms
Neg—Apriori and Acot—Neg—Apriori.

A preliminary version of this work can be found in [6] and the full version in
my PhD [7].

2 Some definitions

We consider a database 7 = {t1,...,¢tn} with N rowsover aset R = {A; :i € I}
of binary-valued attributes, that can be seen as either items or columns; actually
they just serve as a visual aid for their index set I = {1,...,n}.

Definition 1 Let p € P(I) be arbitrary and s € P(I—p), arbitrary we denote
the subset AP® called itemset and identify it with the partial function mapping
the subset AP = {A; : i € p} to 1, the subset A* = {4; : j € s} to 0 and
undefined on the rest. Itemsets AP>* are called k-negative itemsets where |s| = k,
k=0,...,n. If |s| = 0 then we have the positive itemset AP,

A transaction can be seen as a total function. An itemset can be seen as a
partial function. If the partial function can be extended to the total function
corresponding to a transaction then we say that an itemset is a subset of a
transaction.

We identify partial functions defined on a single attribute A;, namely, A0
or A%} with the corresponding symbol Aj or Aj respectively.

Definition 2 We define the specialization relation in T = {AP* /p € P(I), s €
P(I —p)} denoted by < as follows: if X = AP* and Y = A%t are itemsets from
T, we say that X XY iff pCqys Ct.

With respect to this relation, the property of having frequency larger than
any threshold is antimonotone, since X < Y implies fr(X) > fr(Y). Thus,
whenever an itemset is not frequent enough, neither is any of its extensions,
and this fact allows one to prune away a substantial number of unproductive
itemsets. Therefore, frequent sets algorithms can be applied rather directly to
this case. Our purpose now is to aim at a somewhat more refined algorithm.

The support of an itemset is defined as follows.

Definition 3 Let R = {A; :i € I} be a set of n items and let T = {t1,...,tn}
be a database of transactions as before. The support or frequency of an itemset
X is the ratio of the number of transactions on which it occurs as a subset to
the total number of transactions. Therefore:

C{teT:X <t}
B N

fr(X)

Given a user-specified minimum support value (denoted by o), we say than
an itemset A is frequent if its support is more than the minimum support, i.e.
fr(X) >o.

3 Representing Itemsets

We introduce a natural structure in the itemset space by placing them into
“floors” and “levels”. The floor k contains itemsets with k& negative attributes.
In each floor, the itemsets are organized in levels (as usual): the level is the
number of the attributes of the itemset. Using the specialization relation we
organized and related the itemsets.

Now, we give a simple example to show the structure of the itemset space.
This example will be useful to describe the frequent itemset candidate generation
and the path that follows our algorithm for it.

Example: Let R = {A, B,C, D} be the set of four items. In this case, we
use four floors to represent the itemsets with any number of negative attributes
and any number of positive attributes. In each rectangle, the pair (f,£) indicates
the floor f (number of negative attributes in the itemsets of this rectangle) and
level £ (cardinality of the itemsets of this rectangle). See figure 1.

4 Calculating frequencies

Our algorithm performs the same computations as Apriori on the zero floor,
but then uses the frequencies computed to try to reduce the computational
effort spent on 1-negative itemsets. This process goes on along all floors. Overall,
bounded-neg-Apriori can be seen as a refinemet of Apriori in which the explicit
evaluation of the frequency of k-negative itemsets is avoided, since it can be
obtained from some itemsets of the previous floor, if they are processed in the
appropriate order. This idea is based on the following theorem, that is the key
of our approach.

ABCD ABCD,.... ABCD,..... ABCD,..... ABCD
0,4) 1,4 2.4 (3.4 4,4
ABC, BCD,...... ABD...... ABD...... BCD,.....
0,3) (1,3) 2,3) 3,3)
AB, BC,CD....... AB,.... BD,...
0,2) (1,2) 2,2)
4,B,CD 4,B,C.D
0,1) 1,1)
%)
0,0)

Fig. 1. The structure of the itemset space

Theorem 1 Let p € P(I) be arbitrary, and s € P(I — p) with |s| > 1. Then for
each j € s,
fr(AP®) = fr(APs—U}) — fp(4r@lhs—{ih

Proposition 1 Let p € P(I) be arbitrary, and s € P(I — p) with |s| > 1. AP>®
is frequent iff 3j € s, fr(APs—U}) > g 4 fr(APPUs—1}),

Remark 1: Each of the up to |s|-many ways of decomposing fr(AP®) in part 1
leads to the same result: if fr(AP*~{/}) < ¢, for any j € s, then AP is not
frequent.

5 Generating candidates

Moving to the next round of candidates once all frequent f-itemsets have been
identified corresponds to moving up, in all possible ways, one step within the
same floor, and climbing up in all possible ways to the next floor.

More formally, at the floor zero, frequent set A% leads to consideration as
potential candidates of the following itemsets: all A% where ¢ = pU {i} and all
APA3t for j ¢ p. Also, itemset AP*U} would lead to A%} for ¢ = p U {i}, for
i ¢ p and i # j; our algorithm does not use this last sort of steps.

In the other floors the movements are in the same form. For all p € P(I) and
s # 0, from AP** we can climb up to the next floor to AP* where t = s U {j},
for j € P(I — {sUp}). Also, itemset AP* would lead to A?* for ¢ = p U {i}, for
i ¢ pand i ¢ s but we will not use such steps either.

Therefore the scheme of the search of frequent itemsets with &k O-valued at-
tributes (i.e. in the floor k) is based on the following: whenever enough fre-
quencies in the previous floor are known to test it, if fr(AP*~U}) > ¢ +
fr(APbs—{il) where j € s, then we know fr(AP®) > o so that it can be

declared frequent; moreover, for ¢ > 0.5 this has to be tested only when that
APihs—1} turned out to be nonfrequent although AP-*~{/} was frequent.

Example: Let us turn our atention again to the example. Let us suppose
that o < 0.5; we explain the process of candidate generation and the path that
our algorithm follows for it. Suppose that the maximal itemsets to be found are
ABC, ABC, and AB. Thus, A, B, C are frequent items, and also B and C are
frequent 'negative items’. At the initialization, we find that D, A, and D cannot
appear in any frequent itemset. The algorithm stores this information by means
of the set I (defined later). In the following step, we take into consideration
as potential candidates, firstly the itemsets in (0,2), secondly in (1,2), and at
last, in (2,2) that verify the conditions. There we find the frequent itemsets are
AB, AC, BC, AB, AC, BC. At this moment, we know that there do not exist
frequent itemsets in (2, 2). So, there will not exist frequent itemsets in (f,£) with
f>2,£>2and ¢ > f. This information is used in the algorithm by means
of the set J (defined later) to refine the search of candidate generation. In the
following step we scan for frequent itemsets in (0, 3) and (1,3) and ABC, ABC
are frequent itemsets, and the exploration of the next level proves that, together
with AB, they are the maximal frequent itemsets. Along the example it is clear
how the algorithm would proceed in case we are given a bound on the number
of negative attributes present: this would just discard floors that do not obey
that limitation.

We will also use the following easy properties regarding the relation of the
threshold o to the value one-half. They allow for some extra pruning to be
done for quite high frequency values (although this case might be infrequently
occurring in practice).

Proposition 2 For each A € R following properties hold:

1. |fr(A) — 0,5 < |0 — 0,5 & |fr(4) —0,5| < |0 —0,5|, Voel01].
2. If 0 <0,5 then

frld) <o = fr(A)>0 y fr(A)>1-0 & fr(d)<o.
3. If 0 =0,5 then
frid)>o e fr@ <oy frd) <o e fr(@) >0
4. If 0 >0,5 then
frlAy>o = frd) <o y fr(A)<l—-o & fr(d)>o.
For itemsets with cardinal more than one we have the following proposition

Proposition 3 Let p € P(I) be arbitrary and s € P(I — p), arbitrary for state-
ments not depending on p. If 0 > 0,5 following properties hold:

1. Vje€s, if fr(Ars—U) > o+ fr(APPULs—Uh) then
fr(ApU{j}vs_{j})< o.

2. If 3j € s/ fr(ArUts—li}) > 1 -6 > 0 then fr(AP®) < 0.

Proposition 4 Let p € P(I) be arbitrary and s € P(I — p), arbitrary for state-
ments not depending on p.
If 0 > 0,5 then

Z fr(AP9s5="y 51 g >0 = fr(AP%) <o
zCs,z#0

Also, it is useful:
Proposition 5 If fr(A%!) = 0 then for eachi € I

1. fr(AULIAdy = fr(A0T-{id),
2. If fr(Aﬂ,I—{i}) > o then for each j € I — {i}, fr(AUHI-{bi}) > 4,

6 The algorithm

The algorithm has as input the set of attributes, the database, and the thresh-
old o on the support. The output of the algorithm is the set of all frequent
itemsets with negative and positive itemsets. Also, a similar algorithm can be
easily developed to find the set of all frequent itemsets with at most k negative
attributes: simply impose explicitly the bound &k on the corresponding loop in
the algorithm.

With respect to this notation our algorithm traces the following path:
(?,)n, (1,1);(0,2), (1,2), (2,2); (0,3), (1,3), (2,3), (3,3);, ete (recall to the exam-
ple).

The algorithm refines the search of frequent itemsets by means of the set J.
In each level, .J indicates the floors where no frequent itemsets will exist.

The generation of candidates and the computation of their frequencies must be
done by considering o (less or more than 0.5)

If it is possible the frequencies of candidate itemsets with any number of neg-
ative attributes are obtained by using theorem one. It reduces the computational
effort.

Note that, the only negative attributes that could appear in the candidate
itemsets are the frequent elements of the cell (1,1). So, we use this set, as soon
as it is computed, to refine the index set I used later along the computation.

The pseudo code of Neg—Apriori and Acot—Neg—Apriori algorithms can be
seen in [7].

6.1 Complexity of the algorithm

With respect to the complexity of the algorithm, from a theoretical point of
view, two aspects are considered: candidate generation and itemset frequence
computation.

In the candidate generation the worst case is reached when the threshold o
is less or equal to 0.5. In this case, two itemsets one of them with a particular
attribute positive and the other itemset with the same attribute negative can
be frequent simultaneously. If & > 0.5 then by proposition 4 the generation
is refined. Independtly of the o value the sets I and J refine the candidate
generation. So, the needed requirements can be reduced.

In the itemset frequence computation only itemsets with positive attributes
are computed directly from the database. The frequencies of the other candidate
itemsets with any number of negative attributes are obtained by using theorem
one. Therefore, the number of passes through the database is like in Apriori, i.e.,
n + 1, where n is the greatest frequent itemset.

7 Conclusions and Future Work

In cases where the absence of some items from a transaction is relevant but one
wants to avoid the generation of many rules relating these absences, it can be
useful to allow for a maximum of k£ such absences from the frequent sets; even if
no good guess exists for k, it may be useful to organize the search in such a way
that the itemsets with m items show up in the order mandated by how many of
them are positive: first all positive, then m — 1 positive and one negative, and
so on. Our algorithm allows one to do it and takes advantage of a number of
facts, corresponding to relationships between the itemset frequencies, to avoid
the counting of some candidates.

Of course, it makes sense to try to combine this strategy together with other
ideas that have been used together with Apriori, like random sampling to eval-
uate the frequencies, or instead of Apriori, like alternative algorithms such as
DIC [4] or Ready-and-Go [3]. Also, we will study how to integrate our approach
of finding frequent itemsets with negative information in the GRD algorithm [10]
to fin ghe k—most interesting negative rules. Experimental developments can lead
to improved results, and we continue to work along this line.

Another natural line is the study of frequent negative information in se-
quences.

References

1. Agrawal R., Imielinski T., Swami A.N.: Mining association rules between sets of
items in large databases. Proceedings of ACM SIGMOD International Conference
on Management of Data (SIGMOD’98), ACM Press Washington D.C. , May 26-28
(1993) 207-216.

2. Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A.I.: Fast discovery of
association rules, in Fayyad U.M., Piatetsky-Shapiro G., Smyth Rp., Uthurusamy
R. Eds, Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo
Park, CA; (1996) 307-328.

3. Baixeries J., Casas-Garriga G. and Balcazar J.L.: Frequent sets, sequences, and
taxonomies: new, efficient algorithmic proposals. Tech. Rep. LSI-00-78-R. UPC.
Barcelona (2000).

10.

. Brin S., Motwani R., Ullman J.D.; Tsur S.: Dynamic Itemset Counting and Impli-

cation Rules for Market Basket Data. Int. Conf. Management of Data, ACM Press
(1997) 255—264.

Fayyad U.M., Piatetsky—Shapiro G., Smyth P.: From data mining to knowledge
discovery: An overview. In Fayyad U.M., Piatetsky—Shapiro G., Smyth P. and
Uthurusamy R., eds, Advances in Knowledge Discovery and Data Mining, AAAI
Press, Menlo Park, CA, (1996) 1-34.

Fortes I. Balcdzar J.L., Morales R. Bounding Negative Information in Frequent
Sets Algorithms. Lecture Notes in Artificial Intelligence, 2226, (2001), 50-58.
Fortes I. Prospeccién de datos, aprendizaje computacional y técnicas estadisticas
pra la obtencién de reglas. Tesis Doctoral. Universidad de Mlaga (2002).
Gunopulos D.; Khardon R., Mannila H., Toivonen H. Data Mining, Hypergraph
Transversals, and Machine Learning. Proceedings of the Sizteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, ACM Press,
Tucson, Arizona, May 12-14, (1997) 209-216.

Mannila H:, Toivonen H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery. 1(3) (1997) 241-258.
Thiruvady D.R., Webb G. I.: Mining Negative Rules using GRD. H.Dai, R. Srikant,
C. Zhang (Eds.) PADKDD 2004, LNAT 3056, (2004) 161-165.

