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Abstract. Bayesian network based classifiers are only able to handle discrete
variables. They assume that variables are sampled from a multinomial distri-
bution and most real-world domains involves continuous variables. A common
practice to deal with continuous variables is to discretize them, with a subsequent
loss of information. The continuous classifiers presented in this paper are sup-
ported by the Gaussian network paradigm, which assumes that variables follow
a Gaussian distribution. A great advantage of Gaussian network is that they need
O(n2) parameters to model a complete graph. This work shows how classifiers,
supported by the Bayesian network paradigm, can be adapted to deal with contin-
uous variables without discretizing them. In addition, two novel classifier learn-
ing algorithms are introduced. The presented learning algorithms are ordered and
grouped according to their structural complexity: from the simplest naive Bayes
structures to k-dependence Bayesian classifiers and semi naive Bayes. Moreover,
for each structure a filter and wrapper approaches are presented. All these classi-
fiers are empirically evaluated using the Brier score and the predictive accuracy.
The obtained results with both scores suggest that semi naive Bayes is the best
classifier.

1 Introduction

Supervised classification is a basic task in data analysis and pattern recognition. It re-
quires the construction of a classifier, that is, a function that assigns a class label to
instances described by a set of variables. There are numerous classifier paradigms and
one of the most effective and well-known in domains with uncertainty are Bayesian
networks [24], which are based on probabilistic graphical models [16] (PGM).

A Bayesian network is a directed acyclic graph of nodes representing variables and
arcs representing conditional independence relations among the variables. A Bayesian
network assumes that all random variables are multinomial. They handle discrete vari-
ables, and when a continuous variable is present, it must be discretized, with a subse-
quent loss of information.

The Gaussian network [8] is an alternative to work with continuous variables with-
out the need of discretizing them. It is also based on PGM. A Gaussian network is
similar to a Bayesian network, but it assumes that variables are sampled from a Gaus-
sian density distribution, instead of a multinomial distribution. Although it is a strong
assumption, Gaussian distribution usually provides a reasonable approximation to many
real world distributions.



The paper is organized as follows. Section 2 presents five well known paradigms
of discrete classifiers (naive Bayes, selective naive Bayes, tree augmented naive Bayes,
k-dependence Bayesian classifier, and semi naive Bayes). For each paradigm, two clas-
sifier induction algorithms (wrapper and filter versions) to handle continuous variables
are introduced. In the same section, two new algorithms are presented: selective rank-
ing naive Bayes, and wrapper k-dependence Bayesian classifier. In addition, two new
theorems about mutual information are proved. In Section 3, the experimental results
in classification tasks are presented for Gaussian network-based classifiers using two
different scores: the predictive accuracy and the Brier score. Finally, our conclusions
and future works are presented.

2 Adapting Bayesian network classifiers to continuous domains

Bayesian and Gaussian networks are used to encode the joint distribution among the do-
main variables, based on the conditional independencies described by the graph struc-
ture. This fact, combined with the Bayes rule, can be used for classification. In order to
induce a classifier from data, all classifiers have two types of variables: the class vari-
able or class C, and the rest of variables or predictors, X = (X1, . . . , Xn). Although
it is not mandatory, the class variable C is the root of the directed acyclic graph in the
models presented in this paper. The process of classifying an instance x = (x1, . . . xn)
consists in selecting the class with the highest a posteriori p(c | x) value:

p(c | x) ∝ f(c,x) = p(c)

n
∏

i=1

f(xi | pai) (1)

where pai denotes a value of Pai, the set of variables that are the parents of Xi in the
graph. Moreover

f(xi | pai) ∼ N (µc
i +

i−1
∑

j=1

ρ2
c(Xi, Xj)(xj − µc

j), (σ
c
i )

2) (2)

[8], where µc
i and (σc

i )
2) are the mean and variance of Xi conditioned to a class value

C = c, and ρ2
c(Xi, Xj) is c conditioned correlation coefficient between Xi and Xj

[18].
The process of induction of a Bayesian or Gaussian network can be divided in two

parts: structural learning and parametric learning.
Structural learning usually involves a search process, led by a score value, in the

space of possible graph structures. The search process tries to optimize the score, and it
generally finishes when a local optimum is found. Depending on the nature of the search
score, we consider that structural learning can be carried out in two different ways. A
structural learning process is a filter approach when the score which guides the search
process is based on intrinsic characteristics of the data. For example, a structural learn-
ing process is considered a filter approach if the score used is the mutual information
between variables. On the other hand, we consider that a structural learning process is a



wrapper approach when the score is a classification goodness measure of the structure
given the data. In our case, the predictive accuracy score is used for this purpose.

These filter and wrapper concepts are adapted from the feature subset selection
literature [11, 17] and are originally related to the nature of the scores used in the feature
selection task.

Parametric learning consists in estimating parameters from the data. These param-
eters model the dependence relations between variables, represented by the classifier
structure.

One of the main advantages of Gaussian networks with respect to Bayesian net-
works is that any graph structure can be modelled with a fixed number of parameters,
which can be computed a priori in a single pass over the data. The needed parameters
are an array of class conditional covariance matrixes, Σ = (Σ1, . . . Σr), and another
array of class conditional mean vectors µ = (µ1, . . . µr), where r is the number of
class values. In contrast to the usually large number of parameters needed to learn a
complete graph in Bayesian networks r

∏n

i=1 ri − 1, where ri is the number of val-
ues of variable Xi, the number of parameters needed to model a Gaussian network is
O(n2r). This allows us to induce a classifier in a filter (using mutual information or en-
tropy) or a wrapper way reading the train database only once. Another advantage is that
this allows a more reliable and robust computation of the necessary statistics because
the parameters are only class conditioned.

The following subsections presents different classifier paradigms in order of struc-
ture complexity: from the simplest naive Bayes to k-dependence Bayesian classifier and
semi naive Bayes. The structure complexity is related to the type and the number of al-
lowed dependencies between variables. Examples of each presented classifier structure
are shown in Figure 1.
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(e) KDB, K=2.

Fig. 1. Different structure complexity classifiers.

2.1 Naive Bayes

The naive Bayes classifier (nB) [5, 13, 19] is characterized by the conditional indepen-
dence assumption between variables given the class. Moreover, all variables are in-
cluded in the model so the classifier structure is given a priori. Thanks to the indepen-
dence assumption, the factorization of the joint probability is greatly simplified. A nB
structure example is shown in Figure 1(a), where each variable is a class-conditioned
independent variable. After adapting Equation 1 to nB structure particularities, the fol-
lowing factorization is obtained:

p(c | x) ∝ p(c)

n
∏

i=1

f(xi | c) (3)



with f(xi | c) ∼ N (µc
i , σ

c
i ). For example, the factorization of Figure 1(a) results in

p(c | x) ∝ p(c)f(x1|c)f(x2|c)f(x3|c)f(x4|c).
The accuracy obtained with this classifier, is surprisingly high, even in data bases,

that do not obey the strong independence assumption [4] between variables.

2.2 Selective naive Bayes

The selective naive Bayes (selectiveNB)[14] is a modification of nB, which maintains its
strong conditional independence assumption. SelectiveNB performs a variable selection
process in a wrapper way, searching in the space of possible structures guided by the
estimated accuracy. SelectiveNB achieves notable improvement accuracies with respect
to nB especially in domains with redundant variables.

As the search space has 2n structures, an exhaustive search of the space is imprac-
tical, so the induction algorithm performs a search in a greedy way. In other words, at
each point in the search process, the algorithm considers the addition of each variable
not included in the current naive Bayes model, selecting the best choice by the estimated
accuracy. The search continues adding non-included variables until no option improves
the accuracy of the last induced classifier.

A filter version of selectiveNB paradigm is based on the mutual information [3] be-
tween predictor variables and the class. For this purpose, a novel theorem about mutual
information between Gaussian and multinomial variables is presented.

Theorem 1. Let C be a multinomial random variable with r possible values been
p(C = c) = p(c). Let X be a random variable with a normal density function of
parameters (µX , σ2

X). We assume that the random variable X conditioned to C = c
follows a normal density with parameters (µc

X , (σc
X)2). The mutual information be-

tween the variables X and C is given by:

I(X,C) =
1

2
[log(σ2

X −
r

∑

c=1

p(c) log((σc
X)2))]

Proof. The definition of mutual information verifies that:

I(X, C) =

r
∑

c=1

∫

x

f(c, x)log
f(c, x)

p(c)f(x)
dx =

r
∑

c=1

∫

x

p(c)f(x | c)log
f(x|c)

f(x)
dx

=

r
∑

c=1

p(c)

∫

x

f(x | c) log f(x|c)dx −

r
∑

c=1

∫

x

p(c)f(x | c) log f(x)dx

where the integral of the first term agrees with the entropy 1 of a normal distributed
variable with parameters µc

X and (σc
X)2.The second term can be expressed as follows:

r
∑

c=1

∫

x

p(c)f(x | c) log f(x)dx =

∫

x

r
∑

c=1

f(x, c) log f(x)dx

=

∫

x

f(x) log f(x)dx = −
1

2
log(2πeσ

2
X)

1 The entropy of a normal distributed variable with parameters µX and σ2
X is given by [3]:

− 1
2

log(2πeσ2
X)



and then

I(X, C) =
r

∑

c=1

p(c)(−
1

2
log(2πe(σc

X)2) +
1

2
log(2πeσ

2
X)

= −
1

2
log(2πe) −

1

2

r
∑

c=1

p(c) log((σc
X)2) +

1

2
log(2πe) +

1

2
log(σ2

X)

=
1

2
[log(σ2

X) −
1

2

r
∑

c=1

p(c) log((σc
X)2)] �

In order to construct a pure filter algorithm, it must be known the distribution
of I(Xi, C) in order to fix a threshold value, τ , and select the variables that verify
I(Xi, C) ≥ τ . At the moment, this distribution is unknown, so a future work line is to
find this distribution to obtain the above-mentioned threshold. Based on the results of
theorem 1, we propose an algorithm called selective ranking naive Bayes (rankingNB)
shown in Figure 2. RankingNB is a semi-filter approach which guides the search pro-
cess by the mutual information and the estimated accuracy. RankingNB, compared with
the wrapper version, has less computational cost: only O(n) classifiers are constructed
compared with O(n2) of the wrapper approach.

Step 0. Compute the mutual information I(Xi, C) for i = 1 . . . n, and use I(Xi, C) to sort
the variables from the greatest X1 to the smallest Xn.

Step 1. Initialize predictor set ℵ to empty. Classify all cases as the most frequent class.
Step 2. For i = 1 . . . n do:

Add Xi variable to ℵ. Construct the naive Bayes classifier with ℵ and obtain its
estimated accuracy.

Step 3. Return the classifier associated with the variable set X1 . . . Xk which has achieved the
best estimated accuracy in the search process.

Fig. 2. Proposed selective ranking naive Bayes algorithm.

Due to the independence assumption, the factorization represented by the structure
is as simple as the nB factorization shown in Equation 3. For example, the factorization
of Figure 1(b) results in p(c|x) ∝ p(c)f(x1|c)f(x2|c)f(x4|c).

2.3 Semi naive Bayes

The Semi naive Bayes (semiNB) classifier [12, 23] breaks with the strong independence
assumption of NB. With this purpose, a new kind of variable called joint variable Y k is
presented. This kind of variable is composed by the joint of some of the original vari-
ables, where each of the original variables can be in nor more than one joint variable.
The fact that two variables, Xi and Xj , compose a joint variable, Y k, implies that these
two variables are correlated, assuming that they are not conditionally independent. If a
joint variable is composed of multinomial random variables, the states of the joint vari-
able consist in the cartesian product of the states of the multinomial random variables
[23]. The main problem of joint variables composed by multinomial variables Xi is



the estimation of their class conditional probability tables because they have a number
of exponential states in mk,

∏mk

i=1 r
(k)
i − 1, where r

(k)
i is the number of states of the

multinomial random variable X
(k)
i , and mk is the number of original variables which

constitute the joint variable Y k.
If a joint variable is composed of a set of Gaussian variables, it follows a multidi-

mensional normal distribution [1] conditioned to the class variable. This is one of the
contributions of this work. The joint node distribution function follows:

f(yk | c) = (2π)−
1

2
mk | Σc

k |−
1

2 e−
1

2
(y

k
−µc

k
)t(Σc

k
)−1(y

k
−µc

k
) (4)

where Σc
k is the covariance matrix conditioned to a class value, and µc

k is the mean
vector conditioned to a class value of the joint variable Y k. In order to model this
distribution function a number of parameters m2

k ∗ r is needed. This fact solves the
problem of the probability table size needed to model the joint variable relation with
the class variable when the component random variables are considered multinomial.

Depending on the direction of the greedy search process (forward and backward)
Pazzani [23] presents two ways to detect dependencies among variables. Our adapta-
tion of the called Forward Sequential Selection and Joining (FSSJ) to handle continuous
variables is based on Equation 4 to model the class dependence relation of joint vari-
ables. The adaptation of the algorithm in a backward search direction can be easily done
by the application of the same equation.

The FSSJ algorithm initializes the set of variables to be used by the Bayesian classi-
fiers to an empty set. It considers two operators to do the search in the space of possible
structures:

1. Add a variable not used by the current classifier as a new variable class condition-
ally independent of all other variables used in the classifier.

2. Joint a variable not used by the current classifier with a variable currently used by
the classifier.

At each step in the classifier construction, every addition and every joining of an unused
variable with a used variable is considered and evaluated by the estimated accuracy
using a leave one out validation on the training data. If no change makes an accuracy
improvement, the current classifier is returned.

This is a pure wrapper algorithm that constructs O(2n) classifiers. A future work
line consists in the implementation of a filter semiNB version based on (CFS) feature
subset selection.

As semiNB considers independent joint variables, the factorization of a semiNB
structure is very similar to the NB factorization. It is obtained from equation 3 using
equation 4 instead of 2 to factorize terms like p(Xi | C). For example, the factorization
of the structure shown in figure 1(c), assuming that Y1 = (X1), Y 2 = (X2, X3) and
Y 3 = (X4), results in p(c|x) ∝ p(c)f(x1|c)f(x2, x3|c)f(x4|c).

2.4 Tree augmented naive Bayes

The tree augmented naive Bayes (TAN) [7, 10] also breaks with the strong indepen-
dence assumption made by nB classifier, allowing probabilistic dependencies among
predictors.



In this subsection, the adaptation to handle continuous value variables of two well-
known algorithms to induce TAN structures among the variables is exposed, corre-
sponding to filter [7] and wrapper [10] approaches.

As in the original algorithms, in the filter version (fTAN) the permitted graph struc-
tures are limited to tree structures between predictor variables and with arcs from the
class variable to all predictors as shown in Figure 1(d). In the wrapper version (wTAN),
we allow graphs with arcs from class variable only to selected predictors and with arcs
between predictors taking into account that the maximum number of parents of a vari-
able is one. It has a forest between predictors variables instead of the tree structure
among predictors.

The well-known fTAN induction algorithm finds the tree structures that maximize
the likelihood given the data. It can be considered an adaptation of the algorithm pro-
posed by Chow and Liu [2], where they reduce the problem of constructing a maximum
likelihood tree to construct a maximal weighted spanning tree in a graph. The algo-
rithm proposed by Friedman et al. (1997)(wTAN) follows the general outline of Chow
and Liu’s procedure, but instead of using the mutual information between two variables,
it uses class conditional mutual information between predictors to construct the maxi-
mal weighted tree. In order to adapt this algorithm to continuous variables we need to
calculate the mutual information between every pair of predictor variables conditioned
by the class variable. The following theorem shows how this computation can be done.

Theorem 2. Let C be a multinomial random variable. If the joint density function of
variables Xi and Xj conditioned to C = c follows a bivariate normal distribution, then
the mutual information between variables Xi and Xj conditioned to C verifies:

I(Xi, Xj | C) = −1/2

r
∑

c=1

p(c) log(1 − ρ2
c(Xi, Xj))

Proof. The definition of mutual information between Xi and Xj conditioned to C ver-
ifies that:

I(Xi, Xj | C) =

r
∑

c=1

p(c)I(Xi, Xj | C = c) = −
1

2

r
∑

c=1

p(c) log(1 − ρ
2
c(Xi, Xj)) �

The fTAN preserves the Chow-Liu algorithm computational cost, requiring a poly-
nomial time in the number of variables [2], and so maintaining nB’s computational sim-
plicity. This algorithm has two problems: first, the maximization of the structure likeli-
hood does not necessarily imply a minimization of the predictive error. Second, a tree
between all predictors should be formed, so several irrelevant relations between vari-
ables are inevitably added. In order to solve this problem, Keogh and Pazzani present a
wrapper version of the algorithm [10], that we call wrapper tree augmented Bayesian
network (wTAN).

The wTAN [10] implies a different approach to constructing tree-augmented Bayesian
networks. More than a direct attempt to approximate the underlying probability distribu-
tion, they solely concentrate on using the same representation to improve classification
accuracy. As the space of possible structures is exponential in number of variables, the
authors use a hill climbing greedy search algorithm guided by the estimated accuracy.



For each arc added to the network O(n2), classifier structures are considered and
evaluated, where n is the number of predicted variables. In each considered structure
O(n), arcs may be added. So the complexity for wTAN is O(n3).

The factorization of the implied TAN structure (in its filter and wrapper versions) is
more complex than the case of nB and selectiveNB structures. This is due to the class
conditional independence property of groups of variables. The factorization is obtained
from equations 1 and 2 taking into account the particularity that Pai = {Xj , C} or
Pai = {C}. For example, the factorization of the Figure 1(d) is:
p(c|x) ∝ p(c)f(x1|x2, c)f(x2|x3, c)f(x3|c)f(x4|x3, c).

2.5 K-dependence Bayesian classifier

Sahami (1996) introduces an algorithm called k-dependence Bayesian classifier [25]
kDB. This framework can be regarded as a spectrum of allowable dependence in a given
probabilistic model with the NB algorithm at the most restrictive end and the learning
of full BN at the most general extreme.

We regard the structure of the kDB as the structure of the NB which allows each
predictor Xi to have a maximum of k predictor variables as parents, apart from C. In
other words, | Pai |≤ k + 1 [25]. As in the case of TAN paradigm, there are two
reasons to restrict the number of parents of a variable. First, the reduction of the search
space. Second, the probability estimated for a multinomial variable becomes more un-
reliable as additional multinomial parents are added, because the size of the conditional
probability tables increases exponentially with the number of parents [10] and fewer
cases can be used to compute the needed statistics. As explained in the introduction of
Section 2, the number of required parameters in our continuous adaptations is fixed, so
the second problem is avoided. In addition to estimating these parameters, instead of
learning from database partition, the entire database is used. This allows to construct
classifiers with a high number of dependencies between variables.

As the implementation of the kDB algorithm proposed by Sahami [25] uses the class
conditional mutual information between the variables I(Xi, Xj | C) and the mutual in-
formation between class and the variables I(Xi, C) to lead the structure search process,
it is considered a filter paradigm. Hence, we call his approach fkDB. In the introduced
continuous adaptation, the introduced mutual information definitions, shown in equa-
tions 1 and 2, are used again. The fkDB algorithm allows the construction of classifiers
at arbitrary values for the maximum number of dependencies between variables (values
of k), maintaining much of the computational efficiency of the nB model.

At this point we present the novel wrapper approach of kDB called wkDB. wkDB
has the same motivation as wTAN with respect respect to fTAN. The wkDB algorithm
follows the idea of Keogh and Pazzani’s [10] wTAN with Friedman et al’s [7] fTAN
algorithm introducing the parameter K, for each i, 1 < i < n, |Pai| ≤ K + 1, where
K is the number of continuous variables. Our novel wkDB algorithm is shown in Figure
3.

The factorization of kDB and TAN structures are equivalent. For example, the fac-
torization of Figure 1(e) is:
p(c|x) ∝ p(c)f(x1|x2, x3, c)f(x2|x3, c)f(x3|c)f(x4|x2, x3, c).



Step 1. Initialize predictor set to empty. Classify all the cases as the most frequent class.
Step 2. Repeat in each step. Select the best between:

(a) Each variable not included in the model is considered a new predictor. This new
predictor must be conditionally independent with respect to the others given, the class.
(b) Include an arc αi,j between predictors included in the model Xi, Xj , i 6= j ,
as long as the inclusion of αi,j comes with the k-dependent Bayesian classifier
structure.

Evaluate each possible option through the correct classified percentage.
Until No option improves the inducted classifier.

Fig. 3. Proposed wkDB algorithm.

3 Experimental results

In this section, we present the estimated predictive accuracies and Brier score values
[22, 26] obtained with the models of the adapted GN classifier learning algorithms. The
results have been obtained in eleven UCI repository data sets [20] which only contain
continuous predictor variables. All the included databases, except waveform, do not
obey the assumption that variables follow a Gaussian distribution, done by Gaussian
network paradigm. In spite of that, the classifiers presented in this work obtains results
comparable to their discrete versions.

The results for each classifier in each database have been obtained by a 10-fold
cross-validation process with both scores. The performed study has been divided in
three steps, with both scores:

1. Select the classifier with the better score average, taking into account the estimated
score for each database.

2. Based on the 10-fold cross-validation score estimation, for each classifier in all
databases, establish if the selected classifier has obtained better estimated scores at
α = 5% significance level in a paired Wilcoxon [6] test.

3. Based on the scores obtained with each fold of the 10-fold cross-validation process,
for each classifier in each database, establish if the selected classifier has obtained
better results than others in a non-paired Mann-Whitney[6] test. The study has been
performed at α = 10% and α = 5% significance levels, represented in Tables 1
and 2 by “◦” and “•” respectively. The tested databases are presented in tables in
order of the number of parameters needed to model a complete Gaussian network
(proportional to n ∗ r).

3.1 Estimated predictive accuracy

The results obtained are summarized in Table 1. The classifier with the best estimated
score average is semiNB. A conclusion drawn from the second step of the study is that
semiNB has obtained better estimated scores at α = 5% significance level in the selected
databases. The third step of the study suggests that the accuracy differences obtained
by the semiNBare more statistically significant as the number of needed parameters to
model a complete graph increases.



Data Base nB selectiveNB rankingNB semiNB fTAN wTAN fkDB wkDB

HABERMAN 0.74 ± 0.05 0.73± 0.10 0.73 ± 0.10 0.75 ± 0.08 0.75 ± 0.06 0.74 ± 0.07 • 0.75 ± 0.08 0.73 ± 0.06

BUPA • 0.42 ± 0.10 0.59± 0.09 • 0.42 ± 0.06 0.58 ± 0.07 0.52 ± 0.08 0.59 ± 0.08 0.59 ± 0.07 0.58 ± 0.04

LIVER • 0.42 ± 0.08 0.59 ± 0.06 • 0.42 ± 0.06 0.63 ± 0.04 • 0.52 ± 0.09 0.59 ± 0.08 0.59 ± 0.10 0.59 ± 0.07

IRIS • 0.94 ± 0.04 ◦ 0.94± 0.05 ◦ 0.93 ± 0.06 0.98 ± 0.03 0.93 ± 0.08 • 0.93 ± 0.05 0.97 ± 0.03 0.93 ± 0.06

HAYES • 0.60 ± 0.19 • 0.68± 0.09 • 0.60 ± 0.15 0.83 ± 0.05 ◦ 0.76 ± 0.09 • 0.68 ± 0.12 0.77 ± 0.09 • 0.68 ± 0.07

PIMA • 0.65 ± 0.05 • 0.65± 0.05 • 0.65 ± 0.05 0.78 ± 0.03 0.75 ± 0.06 0.65 ± 0.04 • 0.74 ± 0.04 • 0.65 ± 0.05

WINE • 0.69 ± 0.13 • 0.93± 0.06 • 0.90 ± 0.07 0.99 ± 0.02 0.98 ± 0.02 • 0.91 ± 0.07 1.00 ± 0.00 ◦ 0.95 ± 0.07

TEXT-BLOCK • 0.55 ± 0.03 • 0.90± 0.00 • 0.90 ± 0.01 0.95 ± 0.08 • 0.94 ± 0.01 • 0.92 ± 0.01 • 0.91 ± 0.01 • 0.93 ± 0.01

WAVEFORM • 0.77 ± 0.01 • 0.79± 0.02 • 0.77 ± 0.01 0.83 ± 0.01 ◦ 0.82 ± 0.02 • 0.82 ± 0.01 0.71 ± 0.01 • 0.82 ± 0.02

VEHICLE • 0.34 ± 0.06 • 0.39± 0.04 • 0.34 ± 0.04 0.77 ± 0.05 • 0.56 ± 0.05 0.39 ± 0.03 • 0.53 ± 0.04 • 0.42 ± 0.05

Average 0.58 0.70 0,65 0.82 0.74 0.72 0.70 0.74

Table 1. Estimated accuracy results.

3.2 Estimated Brier score

The Brier score reflects the mean confidence of the learned classifier in the real class of
the training data. The formulation of the Brier score is shown in Equation 5:

B =

N
∑

l=1

r
∑

c=1

(p(C = c | X = x(l)) − δ(l)
c )2 (5)

where p(c|x(l)) function is factorized by the classifier, x(l) represents the values for
predictive variables of the case l, N is the number of cases, and δ

(l)
c is the Kronecker

delta. The Kronecker delta is defined as follows:

δ
(l)
c =

{

1 c = c(l)

0 otherwise

where c(l) is the real class of the case l, and c is the predicted class value. A high Brier
score indicates that the learned classifier assigns low confidence levels to the real class
of the instances.

The problem is that f function must be a probability and
∑r

c=1 f(C = c | X =

x(l)) = 1. Discrete classifiers directly handle probabilities and so comply with this
idea, but continuous classifiers must be normalized because they handle distribution
functions (Equations 1 and 2) instead of probabilities. The normalization of the discrete
classifier f process is given by

ρ(C = c
(l) | X = x

(l)) =
f(C = c(l) | X = x(l))

∑r

c=1 f(C = c | X = x(l))

The obtained results for the Brier score are summarized in Table 2. The performed
study throws similar results than the estimated accuracy study, highlighting the compet-
itive results of semiNB.

4 Conclusions and future work

A battery of filter and wrapper classifiers, based on Gaussian networks, is proposed
to deal with continuous variables without discretizing them. The classifiers have been
compared in 7 databases with two different scores: estimated accuracy and Brier score.



Data Base nB selectiveNB rankingNB semiNB fTAN wTAN fkDB wkDB

HABERMAN 0.42± 0.01 0.39± 0.01 0.41± 0.01 0.40± 0.05 0.38± 0.01 0.39± 0.00 0.38± 0.06 0.39± 0.00

BUPA • 0.76± 0.03 0.50± 0.00 • 0.53± 0.00 0.50± 0.05 0.54± 0.01 0.51± 0.00 0.51± 0.06 0.49± 0.00

LIVER • 0.76±0.02 0.50± 0.00 0.52± 0.00 0.50± 0.00 0.55± 0.01 0.50± 0.00 0.51± 0.10 0.50± 0.00

IRIS ◦ 0.14± 0.01 ◦ 0.13± 0.01 ◦ 0.12± 0.00 0.06± 0.00 • 0.13± 0.01 0.15± 0.02 0.06± 0.06 ◦ 0.13± 0.01

HAYES 0.46± 0.04 • 0.53± 0.01 0.48± 0.03 0.42± 0.01 0.44± 0.00 0.50± 0.01 0.46± 0.04 0.50± 0.01

PIMA • 0.61± 0.01 • 0.46± 0.00 • 0.55± 0.01 0.33± 0.00 0.37± 0.01 • 0.45± 0.00 • 0.39± 0.05 • 0.45± 0.00

WINE • 0.66± 0.08 • 0.18± 0.01 • 0.20± 0.02 0.06± 0.03 0.05± 0.00 0.10± 0.01 • 0.02± 0.05 0.08± 0.01

TEXT-BLOCK • 0.86± 0.01 • 0.18± 0.01 • 0.20± 0.00 0.09± 0.05 • 0.12± 0.00 • 0.15± 0.00 • 0.17± 0.06 • 0.13± 0.00

WAVEFORM • 0.40± 0.00 • 0.32± 0.00 • 0.40± 0.00 0.25± 0.02 0.26± 0.00 ◦ 0.27± 0.00 • 0.44± 0.02 • 0.28± 0.00

VEHICLE • 1.13± 0.01 • 0.82± 0.01 • 1.13± 0.00 0.39± 0.00 • 0.67± 0.01 • 0.75± 0.00 • 0.83± 0.07 • 0.73± 0.00

Average 0.69 0.45 0,50 0.28 0.38 0.40 0.40 0.36

Table 2. Estimated Brier results

In sum, semiNB obtains statistically significant improvements (using accuracy and Brier
score) with respect to the rest of the algorithms in the presented databases.

Table 3 presents a work summary: the proposed novel contributions and the adapta-
tions of previous works to the continuous domains presented in the article.

nB selectiveNB rankingNB semiNB fTAN wTAN fkDB wkDB

adapted adapted novel adapted adapted adapted adapted novel

Theorem 1 Equation 4 Theorem 2

Table 3. Contributions of the article in each included algorithm.

A future work line, related to the wrapper approach, consists in the adaptation of
more classifiers supported by BNs for operating directly with continuous variables. The
idea consists in the use of randomized heuristics (such as Genetic Algorithms or Es-
timation Distribution Algorithms [15]) as the search engine in the space of classifier
structures. Following with the wrapper approaches, the Brier score shows the confi-
dence of the classifier in the real class more in depth than accuracy. This fact suggests
that it could be interesting to use the Brier score, instead of accuracy, to lead the struc-
ture search.

Another work line consists in obtaining a threshold for the mutual information intro-
duced here (Equations 1 and 2). This will allow us to implement a pure filter algorithm
based on the mentioned thresholds. Following with the filter approaches, a possible
future work is the implementation of a semi naive Bayes classifier based on the Cor-
relation Based Feature Selection [9] to select the groups of variables highly correlated
with the class and not correlated among them.

Finally, another interesting study could consist in obtaining the results for Brier
score and estimated accuracy using two new validation methods called conservative Z
and corrected resampled t-test [21], instead of the used K-Fold cross-validation.
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