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Abstract Support Vector Machines are learning machines originally de-
veloped on the basis of a binary classification problem with signed out-
puts ±1. The aim of this work is to give a probabilistic interpretation
to the numerical output values into a multi-classification learning prob-
lem framework. For this purpose, a recent SV Machine, called `-SVCR,
addressed to avoid the lose of information occurred in the usual 1-v-
1 training is implemented. On this structure, a certain class of proba-
bilistic outputs are considered in an ensemble architecture with learning
machines working in parallel. New architecture allows to define a ‘inter-
pretation mapping’ working on signed and probabilistic outputs giving
more control to the user on the classification problem.

1 Introduction

Support Vector Machines are learning machines implementing the struc-
tural risk minimization inductive principle to obtain good generalization
on a limited number of learning patterns. This theory was originally
developed by Vapnik on the basis of a separable binary classification
problem with signed outputs ±1 [Vap98]. Standard SVMs outputs have
not a probabilistic interpretation, in the sense to estimate the condi-
tional probability P [Y |X = x] to quantify uncertainty associated to a
prediction. From different perspectives [Kwo99], [MA99], [Pla99], [Sol00],
several probabilistic approaches have been developed to set the ‘tunable’
parameters of the SVM algorithm.
In this work, probabilistic outputs, according the method explained in
[Sol00], are considered in a multi-classification ensemble architecture
with several learning machines working in parallel. The approach took
in consideration for the `-class problem is based on a new SV Machine
[Ang01], called `-SVCR, introduced for multi-classification purposes. The
`-SVCR machine is specially addressed to avoid the lose of information
occurred in the usual 1-v-1 training, by using a similar two-phases (de-
composition, reconstruction) scheme.
The paper is organized as follows: Sollich’s approach is shortly introduced
in the next section. In Section 3, SVMs are analyzed for multi-class



problems when 1-v-1 SVMs are implemented in a two-phases scheme.
Drawbacks from this standard approach leads to the definition of a new
SV machine specifically designed for multi-classification problems, the
`-SVCR machine. Sollich’s probabilities are defined for a `-SVCRs de-
composition and the counterpart reconstruction scheme is determined.
Performance of the new paradigm is evaluated on a benchmark problem.
Finally, some concluding remarks are presented.

2 Probabilities in SVMs

A interesting probabilistic method have been elaborated by Peter Sollich
in [Sol00] to be applied on standards SVMs. This algorithm and standard
SV machines are briefly introduced: let Z = {(x1, y1), · · · , (xn, yn)} be
a training set, with {x1, · · · ,xn} ⊂ X ⊂ IRd, and yi ∈ Y = {−1, 1} for
a binary classification problem. In the general SVM algorithm, inputs x

are firstly mapped onto vectors φ(x) in some feature space, F , by a non
linear mapping. Ideally, in the feature space, where a inner product is
defined, the problem should be linearly separable and a search procedure
is performed in the form of a decision hyperplane π ≡ ω · φ(x) + b = 0,
leading to the SVM optimization problem in the form: to find a parameter
vector ω ∈ IRd′ and a bias b ∈ IR minimizing

min
ω∈IRd′

1

2
‖ω‖2 + C

n
∑

i=1

ξi

s.t.

{

yi (ω · φ(xi) + b)− 1 + ξi ≥ 0, ∀i
ξi ≥ 0, ∀i

(1)

Patterns (xi, yi) in the training set being yi(ω · φ(xi) + b) ≥ 1 verify
ξi = 0, so risk function in (1) is not penalized by them. Remaining
training vectors do increase risk function in a quantity

C ξi = C [1− yi(ω · φ(xi) + b)]

because αi 6= 0 and yi(ω · φ(xi) + b)− 1 + ξi = 0 (Karush-Kuhn-Tucker
condition).
A new formulation of the risk function can be considered:

1

2
‖ω‖2 + C

n
∑

i=1

l(yi(ω · φ(xi) + b)) (2)

where l(z) is the ’hinge loss’ function:

l(z) = |1− z|+ (3)

From this formulation, in [Sol00] is derived a distribution on (X,Y ),
in such a form that problem (1) is the same as maximum likelihood
problem. Accordingly, it follows that probability of y conditioned to x

and θ = (ω, b), with θ(x) = ω · φ(x) + b, is

P (y|x, θ) =











1

1 + e−2Cyθ(x)
if |θ(x)| ≤ 1

1

1 + e−Cy[θ(x)+sign(θ(x))]
if |θ(x)| > 1.

(4)



Generalization process is not disturbed by the former considerations: if
a new entry x is θ∗(x) > 0 then P (Y = 1/θ∗(x)) > P (Y = −1/θ∗(x))
and output machine is Y = 1; analogously, if θ∗(x) < 0 then output
is Y = −1. Moreover, if probabilistic outputs are considered in a multi-
classification ensemble architecture with several learning machines work-
ing in parallel, outputs can be separately interpreted and they can be
compared among them because probabilities introduce output normal-
ization.

3 SVMs for Multi-Classification

A set of possible labels {θ1, · · · , θ`}, with ` > 2 will be considered. Let
Z = {(xi, yi)}

n

i=1 be a training set. Subsets Zk ∈ Z, defined as

Zk = {(xi, yi) : yi = θk}

generate a partition in Z, i.e. Z =
⋃`

k=1 Zk and Zk

⋂

Zh = ∅, ∀k 6= h. It
will be denoted nk = #Zk, so n = n1 +n2 + · · ·+n`. If Ik is the number
of index i being (xi, yi) ∈ Zk, it follows

⋃

i∈Ik
{(xi, yi)} = Zk.

A very usual multi-classification SVM approach is 1-v-1 SVMs: a decom-
position phase generates several learning machines in parallel, having in
consideration only two classes, and a reconstruction scheme allows to
obtain the overall output by merging outputs from the decomposition
phase.

In the next, main features of these 1-v-1 machines will be displayed. Im-
provements will be obtained by incorporating `-SVCR ternary machines
with a probabilistic interpretation.

3.1 1-v-1 SV Machines

In this approach, L = `·(`−1)
2

binary classifiers are trained to generate
hyperplanes fkh, 1 ≤ k < h ≤ `, separating training vectors Zk with
label θk from training vectors in class θh, Zh. If fkh discriminates without
error then sign(fkh(xi)) = 1, for xi ∈ Zk and sign(fkh(xi)) = −1, for
xi ∈ Zh. Remaining training vectors Z \ {Zk

⋃

Zh} are not considered
in the optimization problem. Hence, for a new entry x, numeric output
from the machine fkh(x) is interpreted as:

Θ(fkh(x)) =

{

θk if sign(fkh(x)) = 1
θh if sign(fkh(x)) = −1

In the reconstruction phase, some pulling scheme is implemented having
in consideration labels distribution generated by machines in the parallel
decomposition

Labels θ1 . . . θk . . . θ` Y

Votes m1 . . . mk . . . m`
`·(`−1)

2



where mk is the number of votes obtained by label θk from the machines
fi, i = 1, · · · , `·(`−1)

2
.

The 1-v-1 multi-classification approach is characterized by: (i) `·(`−1)
2

SVMs must be trained on a reduced training set, and (ii) this procedure
is usually preferred to the 1-v-r scheme [Kre99]. Main drawbacks for this
approach are: (i) only data from two classes is considered for training
each machine, so output variance is high and any information from the
rest of classes is ignored, and (ii) the number of machines to be trained
is high in comparison with the 1-v-r approach when ` is high.
SVM solution is affected by this lose of training information because only
two classes are considered in each machine. Hence, if a hyperplane fkh
must classify a input xi with i /∈ Ik

⋃

Ih, only output fkh(xi) = 0 will
do not generate a incorrect interpretation. The first improvement to be
analyzed is to force every training input in different classes to θk and θh
to be contained into the hyperplane fkh(x) = 0.

4 `-SVCR Machines for Multi-Classification

In [Ang01] a new SV Machine is introduced into a similar two-phases
scheme (decomposition, reconstruction) for multi-classification, called `-
SVCR, addressed to avoid the lose of information in the 1-v-1 training.
In order to simplify notation, let suppose we are looking for a hyperplane
separating inputs in class θ1 from class θ2. Training vectors are ordered
in such a form that the first n1 vectors belong to class θ1, next n2 vectors
belong to class θ2 and remaining n − n1 − n2 vectors are from the rest
of the classes, {θ3, · · · , θ`}.
Following the classical SV approach, the objective is looking for a hy-
perplane f12(x) = 0 separating classes θ1 and θ2. Nevertheless, infor-
mation into the rest of the classes will be now used for the hyper-
plane construction: f12(x) must allocate entries from class θ1 in the
region

{

x ∈ IRd : f12(x) ≥ 1
}

, entries from class θ2 must be similarly

allocated in the region
{

x ∈ IRd : f12(x) ≤ −1
}

, and remaining vectors
must be allocated into a region, depending on a parameter 0 ≤ δ < 1,
{

x ∈ IRd, : |f12(x)| ≤ δ
}

. Parameter δ allows to create a slack zone (a
‘tube’) around the hyperplane where remaining training vectors are cov-
ered.
If a hyperplane solution exists in the form f12(x) = ω · x + b, then it is
possible to solve the following `-SVCR problem in exact form:

min
ω∈IRd

1

2
‖ω‖2 (5)

subject to

yi (ω · xi + b)− 1 ≥ 0, ∀i = 1, 2, · · · , n1 + n2, (6)

−δ ≤ ω · xi + b ≤ δ, ∀i = n1 + n2 + 1, · · · , n, (7)

with 0 ≤ δ < 1. The new machine assigns a new entry x to a class
according

Θ(f12(x)) =







θ1 if f12(x) > δ
θ2 if f12(x) < −δ
θ0 if |f12(x)| < δ

(8)



where θ0 is a artificial label designating a no-label assignment.

Usually, no solution exists for the this problem in the original space. A
more general solution can be obtained if kernel functions are introduced
and restrictions (6–7) are relaxed by using slack variables. A solution
hyperplane in the form f12(x) = ω · φ(x) + b must solve the `-SVCR
problem:

min
ω∈IRd

1

2
‖ω‖2 + C1 ·

n1+n2
∑

i=1

ξi + C2 ·
n
∑

i=n1+n2+1

(ϕi + ϕ∗i ) (9)

subject to

yi (ω · φ(xi) + b) ≥ 1− ξi, ∀i = 1, 2, · · · , n1 + n2, (10)

−δ − ϕ∗i ≤ ω · φ(xi) + b ≤ δ + ϕi, ∀i = n1 + n2 + 1, · · · , n, (11)

ξi ≥ 0, ∀i = 1, 2, · · · , n1 + n2,
ϕ∗i , ϕi ≥ 0, ∀i = n1 + n2 + 1, · · · , n.

(12)

A solution to this problem is presented in [Ang01] in the form:

f12(x) =

Nsv
∑

i=1

αi k(xi,x) + b (13)

where αi are the Lagrange multipliers associated to (9) accomplishing

Nsv
∑

i=1

αi = 0

and bias b is obtained from restrictions on the support vectors.

Parameters to be tuned in the `-SV optimization problem are: (i) k,
kernel function; (ii) C1, associated weight for the sum of errors into the
two discriminated classes; (iii) C2, associated weight for the sum of er-
rors into the remaining classes; (iv) δ, insensitivity parameter. Kernel
function is a very relevant choice because it determines the feature space
where separation between classes will be realized. A high dimension of
this space is necessary because all the training vectors labeled with θk,
k = 3, · · · , `, must be covered by a small ‘tube’. However, it has been
empirically demonstrated that restrictions associated to a `-SVCR opti-
mization problem are less powerful than those associated to a SVM for
regression problems [Ang01].

Parameters C1 and C2 are the tradeoff between fitness and smoothing
of the solution. To obtain efficient rules determining adequate values is
a topic of current research.

Insensitivity parameter δ must remain in the range [0, 1] to avoid deci-
sion regions overlapping. If δ decreases, generalization capability of the
learning machine decreases on patterns labeled θ0 and the number of
support vectors increases. This parameter is similar to that used in the
ε-insensitivity Vapnik’s function for SV machines for regression prob-
lems.



4.1 Probabilities in `-SVCR Machines

Problem (9) subject to restrictions (10–12) is considered to be solved.
Let θ(x) = ω · x + b be a possible solution, depending on parameters ω
and b, with ω ∈ IRd and b ∈ IR. It follows,
– If vector xi is labeled θ1, then correct output for the `-SVCRmachine

is θ(xi) ≥ 1, because output yi = 1 for the 1-v-1 learning machine
f12(x) has been matched with θ1 in (8). Otherwise, it follows from
(10) that ξi = 1− θ(xi) ≥ 0 is added to the risk function.

– If vector xi is labeled θ2, then a similar study can be developed with
θ(xi) ≤ −1 and ξi = 1 + θ(xi).

– If vector xi is labeled θk with k 6= {1, 2} then correct output for
the `-SVCR machine is |θ(xi)| ≤ δ, because output yi = 0 has
been matched with θ0. Otherwise, it adds a loss in the risk function
ϕ∗i = −θ(xi)− δ if θ(xi) < −δ or ϕi = θ(xi)− δ if θ(xi) > δ.

When the hinge loss function is used, according [Sol00], “probabilities”
can be assigned to y = 1 and y = −1 depending on the new input x, and
parameters ω and b:

Q[y = 1|θ(x)] = κ(C1, C2) exp [−C1 l(θ(x))] ,
Q[y = −1|θ(x)] = κ(C1, C2) exp [−C1 l(−θ(x))] ,

with κ(C1, C2) to be determined.
By considering the δ-insensitivity function

|z|δ =







−z − δ if z < −δ
0 if −δ ≤ z ≤ δ

z − δ if δ < z

then output y = 0 from the `-SVCR machine can be assigned with
“probability”

Q[y = 0|θ(x)] = κ(C1, C2) exp
[

−C2 |θ(x)|δ
]

.

In order to convert these quantities in effective probabilities, it will be
defined κ(C1, C2) as inverse of

v(θ(x)) =
∑

y∈{−1,0,1}

Q[y|θ(x)].

If an adequate distribution is chosen on X, ω and b, the maximum like-
lihood problem obtained by using probabilities

P [y = 1|θ(x)] = exp [−C1 l(θ(x))] /v(θ(x)),
P [y = −1|θ(x)] = exp [−C1 l(−θ(x))] /v(θ(x)),
P [y = 0|θ(x)] = exp

[

−C2 |θ(x)|δ
]

/v(θ(x))

is the same as `-SVCR problem.
In Fig. 1 is displayed a example for these probabilities. Results on the
machine are very intuitive:
– if θ(x) < −1, probability to assign label y = −1 is higher than the

other two probabilities, and it increases as θ(x) decreases.
– if θ(x) > 1, probability to assign label y = 1 is higher than the other

two probabilities, and it increases along θ(x).
– if −δ < θ(x) < δ, probability to assign label y = 0 is higher than

the other two probabilities, and it increases as nearer is to 0.
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Figure1. Probability function for δ = 0.5, C1 = 6 and C2 = 2.

4.2 Reconstruction Scheme

When probabilities are considered into the models, a new ‘interpretation
mapping’ for `-SVCR outputs, different from (8), can be defined:

Θ(f12(x)) =







θ1 if P [Y = 1] > max {P [Y = 0], P [Y = −1]}
θ0 if P [Y = 0] ≥ max {P [Y = −1], P [Y = 1]}
θ2 if P [Y = −1] > max {P [Y = 0], P [Y = 1]} .

(14)

New mapping is more restrictive than (8) in order to assign a label θ1

or θ2. Definition (14) improves (8): if equalities in the number of votes
there exist then label can be assigned by using a mean of probabilities
for each class. A direct comparison between numeric outputs for different
parallel SV machines is avoided.
Outputs in consideration for each implemented `-SVCR are: (i) assigned
label from `-SVCR, and (ii) associated probability to the labeling. So,
user have a more complete information about outputs from the overall
multi-class architecture.
For illustration, a 4-classes problem is solved by applying a decomposi-
tion and reconstruction 4-SV parallel formulation. Outputs for a certain
input x are

fkh 1-2 1-3 1-4 2-3 2-4 3-4

Label θ1 θ0 θ4 θ0 θ4 θ0
Probability 65% 80% 70% 80% 80% 63%

In this case, not equality is met and overall architecture output for the
input x is labeled θ4 with probability 75%, the mean of f14 (70%) and



f24 (80%). User observes than classifier f12 is wrong, assigning label θ1.
Mapping f34 introduce a worst error because final label output is implied,
so a ‘a posteriori’ study should be considered.
If the pulling would be

fkh 1-2 1-3 1-4 2-3 2-4 3-4

Label θ1 θ1 θ4 θ0 θ4 θ0
Probability 65% 80% 70% 80% 80% 63%

then overall output would assign label θ4 with probability 75%. In this
case, a equality between two class, θ1 and θ4, is met and winner is selected
by using probabilities. Moreover, the machine considering both classes
assigns label θ4 as winner, and maybe this information should have a
higher weight in the final solution.

4.3 `-SVCR Parameters

In our approach, three parameters, C1, C2 and δ, must be selected before
the `-SVCR learning machine is trained. The ‘interpretation mapping’
defined in (14) allows to make evident its relation. By using probabilities
definition and symmetric relation between regions in (14), frontier be-
tween classes can be evaluated by calculating the value δ∗ = θ∗(x) such
that the equation P [Y = 1/θ∗(x)] = P [Y = 0/θ∗(x)] is verified, having
solution

θ∗(x) = δ∗ =
C1 + C2 δ

C1 + C2

This solution can be interpreted like a weighted arithmetic mean of the
frontiers for the `-SVCR and the SVM standard machines, δ and 1,
respectively, weights being C2 and C1.
If substitution is made, mapping can be regarded as

Θ(f12(x)) =







θ1 if θ(x) > δ∗

θ0 if |θ(x)| ≤ δ∗

θ2 if θ(x) < −δ∗
(15)

similar to that defined in (8), with δ∗ depending on C1, C2 and δ.
Variations on the frontiers can be studied in this new expression with
respect to the parameters. If C2 and δ are fixed, increasing C1 signifies
to give more weight to migrations from/to labels θ1 to/from θ2. Frontier
level is approximated towards value 1, hence ‘tube’ region is wider and
resulting learning machine takes little risk. A similar reasoning can be
done if C1 decreases, with a more risked learning machine being gener-
ated.
If C1 and δ are fixed, increasing C2 is equivalent to increase the weight
on errors with patterns labeled θ0 and the number of inputs with label
θ1 or θ2 are increased.
If C1 and C2 are fixed, interpretation on changes in 0 ≤ δ ≤ 1 is the
same as in the original configuration problem.



Studying variations on the frontier with respect to joint variations on C1

and C2, it is noted that

δ∗ = 1−
1− δ

1 + C1/C2

and from here it follows that: if ratio C1/C2 increases then frontier tends
towards 1; if ratio C1/C2 decrease, then frontier tends towards δ. As a
particular case, if C1 = C2, then frontier is the middle point between δ
and 1.

5 A Example on Enterprise Data

A benchmark problem on data called empresa is composed by 474 vec-
tors, took from [Pér01]. 2-dimension patterns are grouped into 3 classes
according a certain professional category. Labeling in the examples are
ordered, so problem could be treated as ‘ordinal regression problem’, but
it have not been considered in this study. A `-SVCR ordinal regression
approach ([AC01]) with probabilities is a future improvement to be done.
Choice of this data has been motivated by its complexity, because there
exits a label dominating the other two labels. Labeling distribution is

Label 1 2 3

Number 363 27 84

Percentage 75.68% 5.71% 17.72%

If a random labeling is assigned, probability to assign correct labels is

A = {Correct output} ;

P (A) =

(

363

474

)2

+

(

25

474

)2

+

(

84

474

)2

=
139450

224676
= 0.6207

i.e., 62.07%. However, if information about label distribution is used, it
could be considered to assign label “1” for any entry x and probability of
correct output is 75.68%. Our overall multi-class machine must improve
this percentage.
A training set is formed by extracting the first 200 vectors, being its
label distribution:

Label 1 2 3

Number 150 11 69

Percentage 75% 6.5% 19.5%

similar to the overall set.
Classification has been developed over normalized data giving a higher
weight to migrations between outputs “1” and “-1”, in fij , than mi-
grations to or from “0” (C1 = 5 and C2 = 3). In this form, influence
from label “1” is reduced. Insensitivity parameter is adjusted to δ = 0.1,



avoiding no-classification regions, and kernel is a gaussian function with
parameter σ = 1.
Mean number of support vectors for the three learned machines is 48
(over 200), and labeling on the training set gives as a result

200 1 2 3 0

1 139 1 10 0

2 7 4 0 0

3 4 0 35 0

Outputs are 89% correct, 11% error and all the training patterns were
classified. A so low insensitivity parameter δ = 0.1 has enforced to label
all the data, however as a result several errors can be appreciated. In
results matrix can be observed 4 “3”-labeled patterns introduced into
class “1”, the widest zone.
Results of the machine evaluated on the remaining vectors in empresa

are

274 1 2 3 0

1 196 3 10 4

2 12 2 0 2

3 7 0 38 0

In global, model makes a correct prediction on 236 patterns (86.13%),
makes mistake on 32 (9.85%) and no label is assigned on 6 (2.19%). If
each class is separately analyzed

Label Correct Error No labeled

1 92.02% 06.10% 01.88%
2 12.50% 75.00% 12.50%
3 84.44% 15.56% 00.00%

it can be concluded than SVMs are sensible to the relative size of the
classes, an inherent characteristic on any discriminant analysis.

6 Conclusions

In this paper, we introduced a new multi-class Support Vector Machine
with probabilistic outputs. Multi-classification problems are analyzed by
this machine and an ensemble of rules are provided to the user in the
labeling process. New procedure is more complete and reliable than stan-
dard approaches.
The novelty δ-insensitivity zone generated for ‘no-labeling’ allows to
cover all the difficult labeling patterns. In this form, rate of patterns
without assigned label can be controlled by the δ parameter and the
user force the machine to take more or less risk in the labeling process,
like it has been empirically proved in [Gon02].
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[Pér01] C. Pérez. Técnicas Estad́ısticas con SPSS. Prentice Hall, 2001.
[Sol00] P. Sollich. Bayesian methods for support vector machines: Evi-

dence and predictive class probabilities. Kluwer Academic Pub-
lidhers, 2000.

[Vap98] V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons,
Inc, 1998.


