
Exploiting Sampling and Meta-learning for

Parameter Setting for Support Vector Machines

Petr Kuba1, Pavel Brazdil2;3, Carlos Soares2;3, Adam Woznica2

1 Masaryk University, Brno, Czech Republic
2 LIACC, University of Porto, R. Campo Alegre 823, 4150-180, Porto, Portugal

3 Faculty of Economics, University of Porto, Portugal

Abstract. It is a known fact that good parameter settings a�ect the
performance of many machine learning algorithms. Support Vector Ma-
chines (SVM) and Neural Networks are particularly a�ected. In this
paper, we concentrate on SVM and discuss some ways to set its pa-
rameters. The �rst approach uses small samples, while the second one
exploits meta-learning and past results. Both methods have been thor-
oughly evaluated. We show that both approaches enable us to obtain
quite good results with signi�cant savings in experimentation time.

1 Introduction

Support Vector Machines (SVM) [5] have become quite widespread in the last
decade or so. Good results have been reported in various domains, but it is
well known that these depend very much on good parameter settings. So using
this algorithm is nontrivial and causes problems to inexperienced users, as they
cannot rely on deeper knowledge of the algorithm, nor on previous experience.
These users tend to loose a lot of time experimenting before good results can be
obtained.

Our goal was to identify most important parameters for this algorithm and
to �nd a strategy for selecting the best (or at least good) values of these param-
eters. At �rst we carried out a preliminary study of SVM on di�erent datasets
to establish the parameters in which reasonable results could be expected. This
enabled us to formulate a principled strategy for experimenting with di�erent
parameter values. As an alternative, we used meta-learning methods that help
to establish relationships between certain datasets characteristics and good
parameter settings.

The rest of this paper is organized as follows. The next section discusses the
strategy that can be followed for experimenting with di�erent parameter values.
Section 3 describes the approach based on meta-learning that is used to sug-
gest parameter values to the user. This approach has been evaluated and this
section described the basic results. Finally, Section 4 contains conclusions and
suggestions for future work.



2 Searching through the Space of Parameter Settings

Support Vector Machines (SVM) have been well documented in literature (e.g.
[5]) and therefore we will not describe the algorithm here. Although they can
be used for both classi�cation and regression task and here we concentrate on
applications to regression problems only.

2.1 Systematic Parameter Variation

Determining the Parameter Ranges

In general, SVM has three parameters that need to be determined. The �rst one
is the width of error tube, which is often referred to as ". Then it is necessary
to determine the type of the kernel function and its parameters. Generally it is
expected that a good parameter setting of the kernel function is more important
than the choice of function itself. So we decided to use only gaussian kernel and
vary its parameter, which is standard deviation (std).

First, we have conducted a preliminary set of experiments whose aim was to
determine the range of possible parameter settings in which good results would
be obtained. All these experiments were performed on 42 di�erent datasets,
whose size varied and the largest ones contained up to 10,000 cases. All these
datasets are shown in Table 2.1.

As the version of SVM used, SVMTorch [4], does not handle discrete at-
tributes, the datasets were modi�ed by binarizing all continuous attributes.

We were surprised to �nd that this range was exceedingly high. For instance,
as far as the parameter kernel std is concerned, we could conclude that for some
datasets good result was obtained if its value was set to 1, while for others it
was necessary to set it to values greater than 10,000.

Another important observation is that the higher the " value, the lower the
number of support vectors. When the error tube is too wide the number of
vectors is zero (all data points �t into the error tube) and predictions of all
values are 0. So if zero support vectors are found there is no reason to continue
experiments for higher values of ". It is very useful information for reducing the
number of experiments and, thus saving time. On the other hand, if the " value
is too low then the number of support vectors is very high and results are usually
quite bad.

We also noticed that if the values of target attribute are normalized, the
range of " values that need to be explored can be substantially decreased (the
largest value than needs to be tried is around 1). So we followed this strategy and
normalized the target attribute for all datasets before trying to learn the SVM
model. Then of course the values need to be denormalized when the prediction
is generated in the testing phase.

After this preliminary study we were able to determine the interval both
parameters for which SVM gave good results. In addition, we have also de�ned
a set of intermediate values to be considered in all future searches for good
parameter setting.



As for ", we have decided to experiment with the following �ve values: 0.001,
0.008, 0.032, 0.128 and 1. Regards the kernel std, the following ten values were
chosen: 1, 4, 16, 64, 256, 1000, 4000, 16000, 64000 and 128000. So to search
through this space of values, we need to explore 5�10 = 50 pairs of values. This
issue is addressed in the following subsection.

Searching through the Parameter Space

Searching through the full parameter space requires quite a lot of computational
e�ort. First it is necessary to test 5 � 10 = 50 pairs of values, as was pointed
out in the previous section. We note that SVM takes quite a long time to run,
particularly if the parameter settings are not right. So this phase took us several
moths to �nish. The results are shown in Table 2.1 (see column "Search on full
data").

If our aim is to �nd a solution relatively quickly, the question is how to do
this. This issue will be addressed in the next subsection.

Using Samples to Search through the Parameter Space

The �rst thing that comes into mind is quite an obvious strategy: use a sample of
the original dataset to determine the parameter setting and then use this setting
to generate the model on the full dataset. But will this strategy lead to good
results? It is conceivable that the parameter setting found to work well with a
particular sample, may not be the right one, if we consider the full dataset. This
is why we have conducted experiments to evaluate this strategy. The results are
shown in Table 2.1, column "Search on sample data", which can be compared to
the previous column (we have not considered the datasets, for which the sample
size was below 1000 cases.)

The results in Table 2.1 indicate that the NMSE errors resulting from this
search are quite similar to those obtained by searching in on the full dataset. It's
noteworthy that for 26 datasets the result obtained on the full dataset, using
the setting found on a small sample, was within 5% tolerance of the result that
would be obtained by searching the space of parameter settings on full dataset.
Given this, we can then conclude that as far as SVM is concerned, its parameters
can be set on a sample. The values found will not be far o� the ideal values.

Using Samples and Reduced Search

To reduce the number of pairs of parameter settings that need to be searched
through, we have considered the following strategy. We continue to use small
samples to search for good parameter settings. First, we �x the value of " (say
to 0.032) and vary value of kernel std and then search for the best value of ".
The method can be summarized as follows:

1. Randomly select a small sample S from given dataset D
2. Using sample S, do:



2.1. Fix value of " (e.g. 0.032)
2.2. Run experiments for all the values of kernel std
2.3. Set STD BEST to the value of kernel std with the best result in the

previous step
2.4. Run experiments for all the values of " and �x kernel std to STD BEST
2.5. Set EPS BEST to the value of with the best result in the previous step

3. Run SVM experiment on dataset D using values STD BEST and EPS BEST
for the corresponding parameters.

The advantage of this method is that it reduces the number of experiments to
be carried out. Instead of 5� 10 = 50 experiments, we need only 10+5� 1 = 14
experiments. As the parameters are set using a limited amount of search, the risks
are that the method could identify parameter settings, which are not quite right
(i.e. rather far o� the ideal values). This is why we have evaluated this alternative
and the results are shown again in Table 2.1 (column "Reduced search on sample
data").

It appears that the results are a bit worse, when compared to the previous
alternative, but the di�erences are not very large. The loss of precision is justi�ed,
if we are prepared to save experimentation time. The saving in time is 50�14 =
36 experiments.

If one experiment takes around 100 seconds (see the last column in Table 2.1),
the saving is 36� 100 seconds, that is, around 1 hour. If the experiment takes
10 times as much (around 1000 seconds), obviously the saving is proportionally
larger, that is, much more signi�cant from the user's point of view.

3 Parameter setting using meta-learning

3.1 Methodology for Metalearning

Meta-learning uses information about the past performance of algorithms to
predict their performance on new datasets. It does that by inducing a mapping
between data characteristics and algorithm performance. Here we consider an
algorithm to be di�erent versions of SVM algorithm, where each version uses a
somewhat di�erent parameter setting from the other ones.

Given that these parameters are continuous, we can address this as a regres-
sion problem. In principle, any regression algorithms could be used for meta-
leaning, but after some initial study, we have opted for regression trees (rpart)
from the R package [7].

The input data for meta-learning contains, for each dataset, one row consist-
ing of:

{ Dataset characterization { one value for each characteristic (see below);
{ Target value { the value of the parameter that gives the best result.

The values of SVM parameters were rescaled logarithmically because range of
values was too large. New ranges of " and kernel std parameters are 0. . . 5 and



Search on Search on Reduced search Reduced search
full data sample data on sample data on sample data

Dataset NMSE NMSE NMSE Train time (s)

abalone 0.448 0.449 0.448 82.9
ailerons 0.248 0.248 0.248 8437.3
bank32nh 0.511 0.511 0.889 55.7
bank8FM 0.045 0.045 0.045 269.3
cal housing 13977 14026 14097 132.4
driving noise 0.470 < 1000 samples 0.470 17.4
fuel cons country 0.191 0.229 0.235 34.8
fuel cons total 0.156 0.162 0.167 31
fuel cons town 0.164 0.165 0.180 33.5
house 16H 0.948 1.074 0.969 699
house 8L 0.901 2.653 0.989 383.7
housing 0.310 < 1000 samples 0.352 13.5
maint interval 0.724 0.727 1.166 29
maximal torque 0.118 0.168 0.141 28.8
steering accel 0.00000886 0.00000886 0.0000152 29.8
top speed 0.104 0.106 0.124 36.9
1km 0.260 < 1000 samples 0.285 12.9
CO2-emission 0.207 0.212 0.293 27.4
CW drag 0.191 0.192 0.360 14.4
acceleration 0.188 0.224 0.295 22.0
available power 0.074 0.076 0.094 41.2
cart 0.053 0.053 0.053 963.2
closedow 0.274 0.274 0.276 70.2
closenikkei 1.001 1.001 1.003 33.8
cpu act 0.224 0.224 0.223 304.6
cpu small 0.286 0.315 0.326 301.6
d2 0.523 0.682 0.571 272.6
delta ailerons 0.407 0.777 0.790 22.8
delta elevators 0.387 0.389 0.388 1408.3
elevators 0.932 0.932 0.943 4910.6
fried 0.064 0.080 0.079 5417.1
uid discharge 0.040 < 1000 samples 0.046 13.1
uid swirl 0.420 < 1000 samples 0.536 12.6
heat 0.004 0.060 0.056 46.9
ind 0.301 0.302 0.304 14.7
kin8nm 0.090 0.091 0.091 4127.3
mv 0.134 0.134 0.178 1341.2
puma32H 0.793 0.801 0.874 31.3
puma8NH 0.355 0.360 0.410 107.1
steering angle 0.0000198 0.0000198 0.0000293 966.8
steering velocity 0.0000140 0.0000154 0.0000140 263.4
telecomm 0.051 0.052 0.052 241.4
Table 1. Results of SVM on di�erent regression datasets. The parameters were iden-
ti�ed using di�erent search methods through the space of di�erent parameter settings.
The NMSE and times were obtained on training the algorithm on full data and testing
on a separate test set.



0. . . 10 respectively. As our aim is to predict good values of " and kernel std
parameters, two separate experiments were performed. In one of them, we at-
tempted to learn to predict " and in the other kernel std. Here we assume that
both parameters are not signi�cantly correlated. As we will see later, we have
grounds to believe that this is so.

3.2 Data characteristics used in Metalearning

Many measures have been developed to characterize data for meta-learning. Ear-
lier work has focused on general, statistical and information-theoretic measures
[2], which still seem to stand quite well against other approaches suggested later
[6, 1]. Recent results in the setting of meta-learning for classi�cation algorithm
selection, show that it is possible to identify a small subset of this type of fea-
tures that is quite predictive [3]. Here we follow the same approach and use the
following set of features, representing certain properties identi�ed beforehand:

{ Number of examples: Scalability with respect to this measure.
{ Number of attributes (binarized): Scalability with respect to this measure.
Given that we know beforehand that attributes are binarized, we count each
symbolic attribute i as ki� 1 attributes, where ki is the number of values of
attribute i.

{ Proportion of symbolic attributes: Preference for symbolic or numeric at-
tributes.

{ Ratio of number of examples to the number of attributes (binarized): Poten-
tial for over�tting. If this value is small, learning algorithms may �nd a model
that adapts too well to the speci�cities of the training data, which may be
caused by noisy or irrelevant attributes, and thus, have poor generalization
performance.

{ Proportion of numeric attributes with outliers: Robustness with respect to
outlying values, which are possibly due to noise. An attribute is considered
to have outliers if the ratio of the variances of mean value and the �-trimmed
mean is smaller than 0.7. We have used � = 0:05.

{ CoeÆcient of variation of the target: Robustness to sparsity of the target,
represented by the ratio of the standard deviation and the average of target
values.

{ Sparsity of the target: Robustness to sparsity of the target, obtained by
discretizing the coeÆcient of variation into three bins: less than 20%, between
20% and 50%, and larger than 50%.

{ Are there outliers in the target? Robustness with respect to this property of
the target.

{ Stationarity of the target: Robustness with respect to this property of the
target.

{ CoeÆcient of linear regression, R2: Linearity of the data, which is indicative
of the amount of useful information in numeric attributes.

{ CoeÆcient of linear regression, R2, using binarized symbolic attributes: Lin-
earity of the data, which is indicative of the amount of useful information in



the attributes. Symbolic attributes are binarized for the reasons explained
above.

{ Average absolute correlation between numeric attributes: Robustness to ir-
relevant attributes.

{ Average absolute correlation of numeric attributes to the target: Average
amount of information in the numeric attributes, which is indicative of the
amount of useful information in numeric attributes (individually) but may
also be regarded as an indication of the number of irrelevant attributes.

{ Average dispersion gain: Average gain in dispersion obtained with the best
split for each symbolic attribute, which serves a similar purpose as the pre-
vious meta-feature, only for symbolic attributes.

After choosing the set of measures, we decided to carry out visual feature selec-
tion as a simple method for checking the quality and usefulness of the measures
for our data. Correlation graph for each couple of measures and for parameters
" and kernel std were generated.

It appeared that there was little or no correlation between " and kernel
std parameters. This was con�rmed by our experiments where " was added to
the data and used to predict kernel std and vice versa and the results didn't
improve. Moreover it appeared that there is no correlation between the number
of examples and parameters " or std, and so this measure was removed.

3.3 Experiments and Evaluation of the Method

To evaluate whether meta-learning brings some bene�ts, we have carried out
leave-one-out evaluation. With this method, 42� 1 = 41 datasets were used as
a learning set for the regression algorithm (rpart) and then the model gener-
ated was tested on the remaining case. This was repeated 42 times. One typical
regression tree obtained for predicting " is shown below (it has been slightly
modi�ed for legibility):

[node split n dev. yval ]

1) root 41 91.83 2.87

2) n.examples.rel.n.attrs >= 32.47 31 72.08 2.55

4) r.squared.bin >= 0.71 15 27.93 1.77 *

5) r.squared.bin < 0.71 16 26.41 3.28 *

3) n.examples.rel.n.attrs < 32.47 10 6.97 3.85 *

The branch identi�ed by "4" can be interpreted as follows: If the ratio of number
of examples to the number of attributes (n.examples.rel.n.attrs) is higher or equal
than 32.47 and the R2 binarized (r.squared.bin) is higher or equal to 0.71, then
the predicted value of " (identi�ed by yval) for a particular dataset is 1.77. If we
de-normalize the value of 1.77 we get a value somewhere between the �rst value
of "=0.001 and the second one, which is "=0.008. The symbol "*" identi�es the
terminal node in the tree. This rule covers n=15 cases and the deviance is 27.93,
meaning that the standard deviation is sqrt(27.93) = 5.28.



In experiments with the parameter ", the mean error of predicted value using
leave-one-out evaluation method was 1.43. It means that the distance between
predicted and real value of parameter is less than 1.43 tested values, on average,
on a scale between 1 and 5.

In the experiments with parameter kernel std, the mean error of predicted
value using leave-one-out evaluation method was 2.14. As there 10 possible values
of kernel std (there were 5 values for "), this could be considered quite good result.

It is also interesting to note which dataset measures cropped out most often
in our leave-one-out study. In the test with " these were: Ratio of number of
examples to the number of attributes, CoeÆcient of linear regression (R2, using
binarized symbolic attributes) and Stationarity of the target. In the test with
kernel std these were: Number of attributes (binarized), Proportion of numeric
attributes with outliers and CoeÆcient of linear regression (R2, using binarized
symbolic attributes).

3.4 Future Work

It would be interesting to see whether this strategy is competitive when compared
to the other ones described earlier. To verify that we could carry out the following
study:

{ suggest the initial parameter values with the help of the meta-learning ap-
proach,

{ de�ne a small local neighborhood (exploiting possibly again the meta-
learning approach);

{ carry out a restricted local search for better parameter settings;
{ verify whether better results than for the approaches described earlier (e.g.
using the Reduced search on sample data);

We plan to carry out further work along these lines in future.

4 Conclusions

In this paper we have explored various approaches for setting parameters of
SVM. These can be divided into two groups. The �rst one relies on our prior
knowledge of useful parameter ranges. We have shown that the search for good
parameter setting can be carried out in a principled way and can exploit data
samples, without signi�cant loss of predictive accuracy (i.e. being able to predict
the correct parameter value).

The second group uses meta-learning to solve the same task. The advantage
of this method is that there is no need to run any experiments. It's only necessary
to generate characteristics of the given dataset.

The advantage of the method relying on sampling, on the other hand, is that
search using samples does not need any knowledge about past performance of
SVM on di�erent datasets.



One way to improve results of presented task that was not explored in this paper
is to combine both methods. It is possible to use meta-learning to predict the
range of good values of parameters and then use search using data samples to
�nd the best setting in this range. The advantage of this approach is that reduced
search space for sampling would allow us to test denser set of values with the
same e�ort.

Acknowledgements

We would like to thank the LIACC members for useful discussions. This work
has been supported by ESPRIT METAL Project.

References

1. H. Bensusan and A. Kalousis, Estimating the Predictive Accuracy of a Classi�er,
In Proc. Proceedings of the 12th European Conference on Machine Learning, pages
25-36, 2001.

2. P. Brazdil, J. Gama and B. Henery, Characterizing the Applicability of Classi�ca-
tion Algorithms Using Meta-Level Learning, Proc. of the European Conference on
Machine Learning (ECML-94), pages 83-102, 1994.

3. P.Brazdil, C.Soares and J.Costa: Ranking Learning Algorithms, To appear in Ma-
chine Learning Journal, Kluwer Academic Publishers, 2003.

4. R. Collobert and S. Bengio, SVMTorch: Support Vector Machines for Large-Scale
Regression Problme, Journal of Machine Learning Research, vol 1, pages 143-160,
2001.

5. Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines. Cambridge University Press, Cambridge, UK, 2000.

6. B. Pfahringer, H. Bensusan and C. Giraud-Carrier, Tell Me Who Can Learn
You and I Can Tell You Who You are: Landmarking Various Learning Algo-
rithms, In Proc. of the Seventeenth International Conference on Machine Learning
(ICML2000), pages 743-750, 2000.

7. The R Project for Statistical Computing, http://www.r-project.org/.


