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Abstract: Extraction of models for complex systems from numerical data of behavior is 
studied. In particular, systems representable as sets of fuzzy if-then rules where the 
premises are connected by t-norms or, by a parametric aggregation operator are 
discussed. A method is presented to extract this kind of fuzzy rules with support of 
neural networks and evolutionary algorithms. 

 
 

1 Introduction 

The extraction of models for complex systems from data of behaviour is a knowledge 
acquisition problem which may appear when working with real systems. The goal is 
to obtain models that are both understandable and accurate enough for a given 
application. The subject has received much attention from the research community in 
the last decade with the aim of combining the learning capability of neural networks 
with the expressiveness of fuzzy if-then rules using linguistic variables. Much of this 
work has been strongly influenced by the pioneering work of Jang [5], who 
introduced the ANFIS system. The important contribution of ANFIS is the idea of 
expressing as net architecture, the main components of a fuzzy inference system: 
fuzzification, implication and (if needed) defuzzification. Nodes of the first hidden 
layer realize the linguistic terms of the linguistic variable associated to a given 
external input. For this purpose they have a bell-shaped (or triangular/trapezoidal 
shaped) activation function, where the weight of the input and the value of the bias 
(from the neural net point of view) determine the width and center of the bell 
representing a linguistic term (from the fuzzy point of view), respectively. Figure 1 
shows an ANFIS system with two input variables having three linguistic terms each, 
and giving rules of the Takagi-Sugeno type [11]. 
___________  
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Fig. 1. : Structure of an ANFIS sys
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the user an a priori decision on the number of linguistic terms per variable, it only 
extracts rules where the premises are connected through differentiable t-norms and 
generates as many rules as the product of the number of linguistic terms per variable. 
For instance if a system has 5 input variables and the associated linguistic variables 
have only 3 terms each, ANFIS would generate 35 = 243 rules. It becomes apparent 
that this amount of rules is a great burden on the understandability of the model. If 
however an adequate evolutionary design of the front end of ANFIS is made, a 
multiresolution effect may be obtained thus alleviating the problem of defining the 
number of linguistic terms per variable and reducing the number of rules, as discussed 
in  [8]. The number of rules may be strongly reduced if a cluster-oriented neuro-fuzzy 
system is used, as analyzed in [1]. In this case the understandability of each rule may 
become more difficult, since a linear combination of input values is associated to a 
linguistic term; but this is compensated by the reduced number of rules needed to 
model a system. It is interesting to mention that this strategy may possibly be traced 
back to work done by Jang and Sun [6], who proved the functional equivalence 
between RBF neural networks and fuzzy inference systems.  
 
 
2 New challenges 
 
The following questions will be studied below: 
 
i) Is it possible to design a neural network to learn appropriate fuzzy 

connectives to aggregate the premises of the if-then rules from behavioural 
data of a  system? 

ii)       Is it possible to combine the neural network with an evolutionary algorithm 
to solve the problem? 

 
 Consider the following decision rule: "If a Conference has a good name and the 
registration fee is convenient (from the point of view of a possible participant), then 
hurry up to submit a paper". Assume that the t-norm minimum is used to realize the 
and-conjunction. The consequence is that in case that the registration fee is right at 
the limit of the budget (i.e. µconvenient(x2) = 0.51) it will make no difference whether the 
conference appears in the ISI-List  (µgoodname(x1) = 0.996) or is only known to a rather 
small group close to the organizers (µgoodname(x1) = 0.53); since the recommendation to 
submit a paper will have in both cases the "strength" 0.51. (The assumption is made, 
that below 0.5 the recommendation begins to be "not to submit" a paper. This 
assumption is made in analogy to normalized linguistic variables. A degree of 
membership of an alement to a linguistic term between 0 and 0.5 implies a degree of 
membership greater than 0.5 to some neighbour term.) Since any other t-norm would 
produce values not larger than those produced by minimum, the choice of another t-
norm would not avoid the problem illustrated above. This is obviously not the way a 
human being would use the rule. A straight t-norm connection of the premises is not 
adequate to express the willingness to compromise, which characterizes the above 
situation.  
 



2.1 Learning uninorms with a neural network 
 
Uninorms were introduced by Yager and Rybalov [14], as a generalization of t-norms 
and t-conorms. Uninorms belong to the class of aggregation operators. (For more 
information on aggregations, see e.g. [3])  
 Let u: [0,1]2 → [0,1] be associative, commutative and monotone in both 
arguments. Moreover for all x ∈ [0,1] and for a given e ∈ [0,1], u(e,x) = u(x,e) = x. 
Then u ist a uninorm. It is fairly obviuos that if e = 1, u turns into a t-norm and if e = 
0, into a t-conorm. The best known pairs of uninorms are (R*, R*) [14] and (Re, Re) 
[4] defined as follows: 
 
 R*(x1,x2) =  max(x1,x2) if min(x1,x2) > e  and min(x1, x2) otherwise 

 R*(x1,x2) =  min(x1,x2) if max(x1,x2) < e and max(x1,x2) otherwise 

 Re(x1,x2) = max(x1,x2) if min(x1,x2) > e ;  0 if max(x1,x2) < e  
       and  min(x1,x2) otherwise 

 Re(x1,x2) = min(x1,x2) if max(x1,x2) < e ; 1 if min(x1,x2) > e 
       and  max(x1,x2) otherwise 

 Re and Re use e ∈ (0,1) and are known to be the smallest and the largest 
uninorms, respectively. 
 For the former example consider R*(µgoodname(x1), µconvenient(x2)) and let e = 0.5. 
R*(0.996, 0.51) = max(0.996, 0.51) = 0.996 meanwhile R*(0.53, 0.51) = max(0.53, 
0.51) = 0.53. It becomes apparent that in this case the uninorm R* behaves as the t-
conorm maximum and leads to a clear distinction between both situations. The same 
result would be obtained in this case with R* and Re. 
 Keep e = 0.5 and use Re(µgoodname(x1), µconvenient(x2)). Since for both conferences 
min(µgoodname(x1), µconvenient(x2)) = 0.51 > e, then Re(µgoodname(x1), µconvenient(x2)) = 1 and 
there is no distinction between the conferences. Let however e = 0.55, then Re(0.996, 
0.51) = max(0.996, 0.51) = 0.996 meanwhile Re(0,53, 0.51) = min(0.53, 0.51) = 0.51. 
Obviously Re behaves as a t-conorm for the first conference but as a t-norm for the 
second one. This simple example illustrates the importance of the right choice of e. In 
what follows we will show a possible way to learn e from data of behaviour. 
 Figures 2a and 2b illustrate an ANFIS-like front-end to learn the parameters 
(position and width) of the Gaussian, Bernoullian or Splines-bell activation functions 
used for the processors of the first layer, which will define the linguistic terms 
associated to the corresponding crisp inputs. Furthermore, the parameter e may be 
adjusted according to the training data. All weights are 1 unless otherwise specified. It 
becomes apparent, that even though this neural network is very simple and only a few 
parameters need to be adjusted, this cannot be done with a gradient descent algorithm, 
since maximum, minimum and the Heaviside function used to determine e are not 



overall differentiable. The problem is however simple enough to be solved by using 
an evolutionary strategy [10] or a real-coded genetic algorithm (see e.g. [2]). 
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Fig. 2. ANFIS-like front-end to learn the linguistic terms
R* (bottom) for one rule 
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By comparing the definitions of R* and Re it is simple to see that the network for R* 
may be slightly modified to realize Re. Similarly in the case of R* and Re. This is 
illustrated in figure 3. The parameters may be adjusted by using again an evolutionary 
strategy or a real-coded genetic algorithm. 
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2.2 Learning a generalized λ-mean 
 
 

Generalized λ-means [7] represent another kind of parametric combination of t-norms 
and conorms. 
 Let T be a t-norm and S be its t-conorm. Then for some λ ∈ (0,1) and all x1, x2 ∈ 
[0,1] the λ-mean gλ is defined as follows : 
 min(λ, S(x1,x2)) if x1, x2 ∈ [0,λ] 

  gλ(x1,x2) =  max(λ, T(x1,x2))  if x1, x2 ∈ [λ,1] 

       λ   otherwise 

 
 
 
 
Let T(x1,x2) = x1⋅x2 and S(x1,x2) = x1 + x2 – (x1⋅x2). The network shown in Fig. 4, 
trained with an evolutionary strategy or a real-coded genetic algorithm can learn the 
parameters of the linguistic terms as well as λ. The dashed line frames the part of the 
net where the values are calculated. The rest of the net makes the selection according 
to the values of the inputs. 
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In this as well as in the former cases, the trained network becomes a piece of 
dedicated hardware for the fast evaluation of the rules. It is fair to say that if there is 
no a priori information on the kind of connectives to be used among the premises, a 
hypothesis has to be stated. The method explained above finds the proper parameters 
if the hypothesis is correct, otherwise it rejects the hypothesis by converging to a non-
acceptable level of error when trying to fit the available performance data. 
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