
FAMA: Tooling a Framework for the Automated Analysis of Feature Models

David Benavides, Sergio Segura, Pablo Trinidad and Antonio Ruiz-Cort́es
Department of Computer Languages and Systems

University of Seville
Av. de la Reina Mercedes S/N, 41012 Seville, Spain

e-mail:{benavides, segura, trinidad, aruiz}@tdg.lsi.us.es

Abstract

The automated analysis of feature models is recognized
as one of the key challenges for automated software de-
velopment in the context of Software Product Lines (SPL).
However, after years of research only a few ad-hoc propos-
als have been presented in such area and the tool support
demanded by the SPL community is still insufficient. In pre-
vious work we showed how the selection of a logic repre-
sentation and a solver to handle analysis on feature models
can have a remarkable impact in the performance of the
analysis process. In this paper we present a first imple-
mentation of FAMA (FeAture Model Analyser). FAMA is a
framework for the automated analysis of feature models in-
tegrating some of the most commonly used logic represen-
tations and solvers proposed in the literature. To the best of
our knowledge, FAMA is the first tool integrating different
solvers for the automated analyses of feature models.

1. Introduction

Feature Modelling is a common mechanism to manage
variability in the context of software product lines (SPL).
A Feature Model (FM) represents all possible products in
an SPL in terms of features. A feature is an increment in
product functionality. FMs can be used in different stages
of development such as requirements engineering [14, 15] ,
architecture definition or code generation [1, 4].

Automated analyses of FMs is recognized in the litera-
ture as an important challenge in SPL research [1, 3]. The
automated analyses of FMs is usually performed in two
steps: i) The FM is translated into a certain logic repre-
sentationii) Off-the-shelf solvers are used to extract infor-
mation from the result of the previous translation such as
the number of possible products of the feature model, all
the products following a criteria, finding the minimum cost
configuration, etc [6]. In previous works we introduced how

the use of different solvers [7] and logic representations [8]
can have an important effect in the time and memory perfor-
mance of the analysis process. We also showed that there is
not an optimum logic representations and solver for all the
operations that can be performed on an FM.

Existing tools to analyse FMs depend on concrete solvers
and their performance could be improved if they used sev-
eral solvers. Two options arise to support multiple solvers:
i) Extending an existing tool to use several solvers,ii) cre-
ate our own multi-solver framework that supports any kind
of representation and solver and could interoperate with ex-
isting tools. We have chosen the second option because the
analysed tools are either not open–source tools or they are
not prepared to be adapted to support multiple solvers.

In this paper we present a first prototype implementa-
tion of FAMA. FAMA is an extensible framework for the
automated analysis of feature models. FAMA allows the
integration of different logic representations and solvers in
order to optimize the analysis process. It can be config-
ured to select automatically in execution time the most effi-
cient of the available solvers according to the operation re-
quested by the user. The current implementation of FAMA
integrates three of the most promising logic representations
proposed in the area of the automated analysis of feature
models: CSP, SAT and BDD, but more solvers can be added
if needed. The implementation is based on an Eclipse plug–
in and uses XML to represent FMs so it can interoperate
with other tools that support it.

The remainder of the paper is structured as follows: in
Section 2 the automated analysis of FMs is outlined and
details of the performance offered by the solvers used are
presented. Section 3 focuses on the description of the func-
tionality and some of the most relevant design and imple-
mentations details of the framework. A brief overview of
some related tools is introduced in Section 4. Finally we
summarize our conclusions and describe our future work in
Section 5.



2. Automated Analysis of Feature Models

Once an FM is translated into a suitable representation
it is possible to use off–the–shelf solvers to automatically
perform operations to analyse a FM [5, 6].

The current implementation of the framework integrates
three of the most commonly used logic representations pro-
posed for the automated analyses of feature models: CSP,
SAT and BDD. A complete performance test of solvers
dealing with such representations and details about the
translation of an FM into a CSP, SAT and BDD were in-
troduced in [8, 5]. Following, we overview these represen-
tations and we outline the most relevant performance details
obtained from such test.

2.1 Constraint Satisfaction Problem
(CSP)

A Constraint Satisfaction Problem(CSP) [17] consists
on a set of variables, finite domains for those variables and
a set of constraints restricting the values of the variables.
Constraint Programming can be defined as the set of tech-
niques such as algorithms or heuristics that deal with CSPs.
A CSP is solved by finding states (values for variables) in
which all constraints are satisfied. CSP solvers can deal
with numerical values such as integer domains. The main
ideas concerning the use of constraint programming on FM
analysis were stated in [5].

Constraint Programming is the most flexible proposal. It
can be used to perform the most of the operations currently
identified on feature models [6]. However, constraint pro-
gramming solvers reveal a weak time performance when ex-
ecuting certain operations on medium and large size feature
models as for example calculating the number of possible
combinations of features [7, 8].

2.2 Boolean Satisfiability Problem (SAT)

A propositional formula is an expression consisting on a
set of boolean variables (literals) connected by logic opera-
tors(¬,∧,∨,→,↔). Thepropositional satisfiability prob-
lem(SAT) [12] consists on deciding whether a given propo-
sitional formula is satisfiable, i.e., a logical values can be
assigned to its variables in a way that makes the formula
true. The basic concepts about the using of SAT in the au-
tomated analysis of FMs were introduced in [1].

The performance results of SAT solvers are slightly bet-
ter than the results of CSPs however this approach is not so
powerful [8]. To the best of our knowledge, there is not any
approach in which feature models attributes can be trans-
lated to SAT in order to perform operations as maximizing
or minimizing attribute values.

2.3 Binary Decision Diagrams (BDD)

A Binary Decision Diagram(BDD) [10] is a data struc-
ture used to represent a boolean function. A BDD is a
rooted, directed, acyclic graph composed by a group of de-
cision nodes and two terminal nodes called 0-terminal and
1-terminal. Each node in the graph represents a variable
in a boolean function and has two child nodes representing
an assignment of the variable to 0 and 1. All paths from
the root to the 1-terminal represents the variable assign-
ments for which the represented boolean function is true
meanwhile all paths to the 0-terminal represents the variable
assignments for which the represented boolean function is
false.

Although the size of BDDs can be reduced according to
some established rules, the weakness of this kind of repre-
sentation is the size of the data structure which may vary
between a linear to an exponential range depending on the
variable ordering [10]. Calculating the best variable order-
ing is an NP-hard problem. However, the memory problem
is clearly compensated by the time performance results of-
fered by BDD solvers. While CSP and SAT solver are in-
capable of finding the total number of solutions of medium
and large size feature models in a reasonable time, BDD
solvers can work out it in an insignificant time, so it justi-
fies their usage at least on counting operations.

3 FAMA framework

FAMA has been implemented as a complete tool for the
edition and analysis of FMs. FAMA supports cardinality-
based feature modelling (that includes traditional fea-
ture models, e.g FODA, Feature–RSEB, and so on), ex-
port/import of FMs from XML and XMI and analysis op-
erations on FMs. In order to make our tool multiplatform
and easy to access we implemented FAMA as a plugin for
the Eclipse Platform1. In the next sections we overview of
the functionality offered by the framework and we describe
some of the most relevant design and implementation de-
tails.

3.1. General Description

FAMA offers two main functionalities: visual model edi-
tion/creation and automated model analysis. Once the user
has created or imported (from XML/XMI) a cardinality-
based FM, the analysis capability can be used. Most of the
operation identified on FMs [6] are being currently imple-
mented. At the moment of writing this article the operations
fully supported by FAMA are:

1http://www.eclipse.org/



• Finding out if an FM is valid, i.e. it exists a a product
satisfying all the constraints.

• Finding the total number of possible products of an FM
(number of products).

• List all the possible products of a feature model (list of
products).

• Calculate the commonality of a feature, i.e. the number
of products where a feature appears in.

FAMA integrates different solvers in order to combine
the best of all of them in terms of performance. The actual
version of the framework integrates CSP2, SAT 3 and BDD
4 Java solvers to perform the analysis tasks. However, an
unlimited number of new analysis operations and solvers
could be added.

One of the advantages of FAMA is the ability to select
automatically, in execution time, the most efficient solver
according to the operation requested by the user. The map-
ping from a FM onto the correspondent solver is done on
demand. Therefore, if the user asks for the number of pos-
sible combinations of features of an FM the framework will
select automatically the BDD solver to get it (the most effi-
cient known approach for this operation). The automated
selection of a solver is based on the value of some con-
figuration parameters establishing the priority between the
available solvers for each operation. The values of these pa-
rameters were set according to the results from a complete
performance test of the solvers integrated in the framework
[8].

3.2. Design and Implementation

FAMA is logically divided into two modules: the analy-
sis engine and the visual editor (Figure 1).

The FAMA analysis engine is the responsible for per-
forming the analysis tasks requested by the user. It receives
as main input what we define as questions. A question
is composed by an FM in XML format and the parame-
ters, if any, associated to the operation requested by the
user. The FMs supplied as main input of the analysis engine
are instances of an FM Metamodel [9] defined in an XML
Schema. The metamodel defines two kinds of relations: bi-
nary relations (such as mandatory, optional and cardinality
relations) and set relations (such as alternative, or-relations
and cardinality groups). It acceptsdependsand excludes
constraints and feature attributes.

The FAMA graphical user interface was implemented
using theEclipse Modeling Framework(EMF). EMF is a

2we used JaCoP solver http://www.cs.lth.se/home/Radoslawzymanek/
3we used SAT4j http://www.sat4j.org
4we used JavaBDD, http://javabdd.sourceforge.net

modelling framework and code generation facility for build-
ing tools based on a structured data model. From a model
specification described in XMI, EMF provides tools and
runtime support to produce a set of Java classes for the
model, a set of adapter classes that enable editing of the
model, and a basic editor. The EMF editor of the presented
tool is based on an Extended FM Metamodel containing all
the information of the metamodel used in the analysis en-
gine plus information specifying the way in which the FMs
can be edited.

The FMs created are saved in XMI format in order to
maximize the interoperability with other applications using
the OMG specifications. However, importation and expor-
tation of FMs in XML format is also supported.

Figure 1. Analysis Engine and EMF Editor

FAMA has been implemented as a plugin of the Eclipse
Platform. Eclipse is an open development platform com-
prised of extensible frameworks, tools and runtimes for de-
veloping and managing software. The integration of a tool
in the Eclipse Platform not only reduce significantly the de-
velopment effort but also guarantee that the built software
will be easy to access and install in any platform using Java.
A screenshot of our FAMA Eclipse plug–in deployed is
shown in Figure 2.

The GUI of the plug–in is composed by two main cus-
tomised tree views: the modelling view (Figure 3) and the
analysis view (Figure 4). The modelling view allows the
edition and modification of existing FMs. Roughly speak-
ing, the edition process is based on the selection of existing
nodes and the use of the context menu to add new subnodes.
When a new FM is created the root node is automatically
added. The attributes of the nodes (name, description, min
and max cardinality, etc.) can be edited using a property
view implemented for such end.

Once the FM is created or imported, the user can start
using the analysis view to automatically extract information
from it. When the analysis view is enabled all the features
of the FM adopt a selection state. The user can apply filters
by labelling the feature as selected or removed.

By default, FAMA uses the most efficient solver for



Figure 2. Eclipse Plugin

Figure 3. Modeling View
Figure 4. Analysis View



each operation. Current implementation uses JaCoP5 solver
for CSP representation, Sat4j6 for SAT and JavaBDD7 for
BDD. However, the plugin is equipped with a fine–grained
configuration utility which allow selecting what of the avail-
able solver will be used to perform each operation. Figure
5 shows a screenshot of the property page used to set the
configuration options.

Figure 5. Preferences Page

4 Related Work

The Feature Model Plugin8 (FMP) [13] has also been
implemented as an Eclipse plug–in. It supports cardinality-
based feature modelling, specialization of feature diagrams
and configuration based on feature diagrams. FMP uses a
BDD solver to work out the number of possible combina-
tion of features in an FM. It also supports the use of filters.
FMP is becoming a mature tool with interesting extensions
but it does not have the analysis of FMs between its main
goals. It does not support attributed feature models and do
not include more than one solver for the analysis.

XFeature9 [11] is an XML-based feature modelling tool
also implemented as an Eclipse plug–in. XFeature supports
the modelling of product families and applications instanti-
ated from them. This tool does not support the automated
analysis of FMs.

CaptainFeature10 is a feature modelling tool using the
FODA notation to render feature diagrams. It also includes

5http://www.cs.lth.se/home/Radoslaw zymanek/
6http://www.sat4j.org
7http://javabdd.sourceforge.net
8http://gp.uwaterloo.ca/fmp/
9http://www.pnp-software.com/XFeature/

10https://sourceforge.net/projects/captainfeature/

an integrated configurator to specialize the created feature
diagrams. CaptainFeature does not support the automated
analysis of FMs.

Requiline11 [18] is defined as a requirement engineering
tool for the efficient management of software product lines.
From the edition of a group of features and requirements
Requiline derives product configurations. It also includesa
consistency checker and a query and XML interface. Apart
from the consistency checking, RequiLine does not perform
any of the others analysis operation identified on FMs [6].

Pure::Variants12 is a commercial tool supporting feature
modelling and configuration. This actual version of tool
does not support cardinalities. Pure::Variants supports ba-
sic analysis operations through a Prolog-based constraint
solver.

The AHEAD Tool Suite13 (ATS) [2] is a set of tools for
product-line development that support feature modulariza-
tions and their compositions. AHEAD can perform certain
analysis operations on FMs by means of SAT solvers [1].
It does not include feature models attributes in the analy-
sis. Feature models are saved as grammars and no XML
representation is provided.

Table 1 summarizes the exposed proposals.

F
M

P

X
F

ea
tu

re

C
ap

ta
in

F
ea

tu
re

R
eq

ui
Li

ne

P
ur

e:
:V

ar
ia

nt
s

A
H

E
A

D
To

ol
S

ui
te

FA
M

A

CSP - - - - - - +
SAT - - - - - + +

BDD + - - - - - +
Multi Solver - - - - - - +

Basic FMs + + + + + + +
Cardinality-based FMs + + - - - - +

XML/XMI + + - + + - +
Maturity + + + + + + ∼

Table 1. Summary of the proposals

5 Conclusions and Future Work

In this paper we introduced the first prototype implemen-
tation of FAMA which is a framework for the automated
analysis of feature models. We introduced the logic repre-
sentations currently used in the framework and we exposed

11http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline/
12http://www.pure-systems.com/
13http://www.cs.utexas.edu/users/schwartz/ATS.html



some of the most relevant design and implementation de-
tails. Finally, we compared our proposal with some other
feature modelling tools and we concluded that this is the
first tool integrating different solvers to optimize the analy-
sis of feature models. Although FAMA is not a mature tool
yet, its promising capabilities of extensibility, interoperabil-
ity and integration make it a tool to take into account in the
future.

Several challenges remain for our future work. The in-
tegration of new solvers and new analysis operations are
currently in process. All the integrated solvers performance
must be analysed in order to define the selection criterion
for each kind of operation. We are also studying licenses
issues in order to release our tool. We really trust that for-
mal semantics [16] are needed for the verification of our
framework and we are working on that direction too.

Acknowledgments

The work reported in this article was supported by the
Spanish Ministry of Science and Technology under grants
TIC2003-02737-C02-01 and TIN2006-00472. We would
like to thank Salvador Trujillo and Daniel Le Berre for their
helpful comments on an earlier draft of this paper.

References

[1] D. Batory. Feature models, grammars, and proposi-
tional formulas. InSoftware Product Lines Confer-
ence, LNCS 3714, pages 7–20, 2005.

[2] D. Batory. A tutorial on feature oriented programming
and the ahead tool suite. InSummer school on Gener-
ative and Transformation Techniques in Software En-
gineering, 2005.

[3] D. Batory, D. Benavides, and A. Ruiz-Cortés. Auto-
mated analysis of feature models: Challenges ahead.
Communications of the ACM, December, 2006.

[4] D. Batory, J. Sarvela, and A. Rauschmayer. Scal-
ing step-wise refinement.IEEE Trans. Software Eng.,
30(6):355–371, 2004.

[5] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Auto-
mated reasoning on feature models.LNCS, Advanced
Information Systems Engineering: 17th International
Conference, CAiSE 2005, 3520:491–503, 2005.

[6] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Se-
gura. A survey on the automated analyses of feture
models. InJornadas de Ingenierı́a del Software y
Bases de Datos (JISBD), 2006.

[7] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cort́es. Using java csp solvers in the automated anal-
yses of feature models.LNCS, 4143:389–398, 2006.

[8] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cort́es. A first step towards a framework for the auto-
mated analysis of feature models. InManaging Vari-
ability for Software Product Lines: Working With Vari-
ability Mechanisms, 2006.

[9] D. Benavides, S. Trujillo, and P. Trinidad. On the
modularization of feature models. InFirst European
Workshop on Model Transformation, September 2005.

[10] R. Bryant. Graph-based algorithms for boolean func-
tion manipulation.IEEE Transactions on Computers,
35(8):677–691, 1986.

[11] V. Cechticky, A.Pasetti, O. Rohlik, and W. Schaufel-
berger. Xml-based feature modelling.LNCS, Software
Reuse: Methods, Techniques and Tools: 8th ICSR
2004. Proceedings, 3107:101–114, 2004.

[12] S. Cook. The complexity of theorem-proving proce-
dures. InConference Record of Third Annual ACM
Symposium on Theory of Computing, pages 151–158,
1971.

[13] K. Czarnecki and P. Kim. Cardinality-based feature
modeling and constraints: A progress report. InPro-
ceedings of the International Workshop on Software
Factories At OOPSLA 2005, 2005.

[14] S. Jarzabek, W. Ong, and H. Zhang. Handling vari-
ant requirements in domain modeling.The Journal of
Systems and Software, 68(3):171–182, 2003.

[15] M. Mannion. Using first-order logic for product line
model validation. InProceedings of the Second Soft-
ware Product Line Conference (SPLC2), LNCS 2379,
pages 176–187, San Diego, CA, 2002. Springer.

[16] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bon-
temps. Feature Diagrams: A Survey and A Formal
Semantics. InProceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference (RE’06),
Minneapolis, Minnesota, USA, September 2006.

[17] Edward Tsang.Foundations of Constraint Satisfac-
tion. Academic Press, 1995.

[18] T. von der Massen and H. Lichter. Requiline: A
requirements engineering tool for software product
lines. In F. van der Linden, editor,Proceedings of
the Fifth International Workshop on Product Family
Engineering (PFE-5), LNCS 3014, Siena, Italy, 2003.
Springer Verlag.


