
Automated Error Analysis for the Agilization ofFeature Modeling 1

P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M. ToroDpto. de Lenguajes y Sistemas Informáti
os, University of SevilleAv. Reina Mer
edes s/n, 41012 Seville (Spain)
Abstra
tSoftware produ
t lines (SPL) and agile methods share the
ommon goal of rapidlydeveloping high quality software. Although they follow di�erent approa
hes to a
hieveit, some synergies
an be found between them by i) applying agile te
hniques to SPLa
tivities so SPL development be
omes more agile; and ii) tailoring agile method-ologies to support the development of SPL. Both options require an intensive useof feature models, whi
h are usually strongly a�e
ted by
hanges on requirements.Changing large�s
ale feature models as a
onsequen
e of
hanges on requirements isa well�known error�prone a
tivity. Sin
e one of the obje
tives of agile methods is arapid response to
hanges in requirements, it is essential an automated error analy-sis support in order to make SPL development more agile and to produ
e error�freefeature models.As a
ontribution to �nd the intended synergies, this arti
le sets the basis to pro-vide an automated support to feature model error analysis by means of a frameworkwhi
h is organized in three levels: a feature model level, where the problem of errortreatment is des
ribed; a diagnosis level, where an abstra
t solution that relies onReiter's theory of diagnosis is proposed; and an implementation level, where theabstra
t solution is implemented by using
onstraint satisfa
tion problems (CSP).To show an appli
ation of our proposal, a real
ase study is presented where theFeature�Driven Development (FDD) methodology is adapted to develop an SPL.Current proposals on error analysis are also studied and a
omparison among themand our proposal is provided. Lastly, the support of new kinds of errors and di�erentimplementation levels for the proposed framework are proposed as the fo
us of ourfuture work.Keywords: feature models, agile methods, error analysis, theory of diagnosis,
on-straint programmingPreprint submitted to Elsevier September 10, 2007

1 Introdu
tion and MotivationThe so�
alled agile methods have arisen to fa
e up to the problems that tra-ditional, heavyweight software development methodologies have not satisfa
-torily solved yet. Agile methods pursue some main goals whi
h are des
ribedin the Agile Manifesto (Fowler and Highsmith, 2001), where a number of key
hanges to traditional software development are proposed. For example: fo
us-ing the e�orts during development in the intera
tion with
ustomers throughworking software;
ollaborating with
ustomers during development instead ofnegotiating
ontra
ts at the beginning of development; adapting software to
hanging requirements, et
. In other words, the aim of agile methods is pro-du
ing high�quality software produ
ts in less time and
ost than using tra-ditional software development methodologies by redu
ing unne
essary tasksand in
reasing produ
tivity.On the other hand, the software produ
t line (SPL) approa
h intend to developa set or family of software produ
ts within a
on
rete appli
ation domain.In a SPL, software produ
ts are developed from a set of shared,
ommonassets �the
ore assets� and a set of produ
t�spe
i�
 assets. The
ore�assetsdevelopment pro
ess is known as domain engineering whereas the produ
t�spe
i�
 assets development pro
ess is known as appli
ation engineering (Pohlet al., 2005).Although both approa
hes are very di�erent from ea
h other, they share theaim of redu
ing development time and
ost while quality is not
ompromised,even in
reased. Our experien
e applying both approa
hes separately has madeus think that is possible to �nd some synergies by sharing some pra
ti
es andte
hniques so that SPL development be
omes more agile and agile methods
an adopt an SPL�like orientation.Considering the agilization of SPL development, this arti
le is fo
used on pro-
esses related to the so�
alled feature models, whi
h are used to des
ribe theprodu
ts in an SPL and are intensively used in SPL development (see Se
tion2.1). For example, Czarne
ki et al. (2005) and So
hos et al. (2004) propose in-ferring the
ore ar
hite
ture from feature models; Batory et al. (2004) proposeusing feature�oriented programming (FOP) to implement an SPL de
ompos-ing the ar
hite
ture into features and automati
ally deriving produ
ts froma sele
tion of their features; Benavides et al. (2005) use feature models tosupport de
ision making during produ
tion.Email address: {ptrinidad, benavides, amador, aruiz, mtoro}�us.es (P.Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M. Toro).
1 This work has been partially supported by the European Commission (FEDER)and Spanish Government under CICYT proje
t Web�Fa
tories (TIN2006�00472). 2

As many pro
esses in SPL development use feature models, applying someagile prin
iples to frequent operations on feature models
an make SPL devel-opment more agile, espe
ially during the domain engineering pro
ess in whi
hlarge�s
ale feature models must be developed. As Kang et al. (1990) statedin the Feature�Oriented Domain Analysis (FODA) report, an important taskwhen using large�s
ale feature models e�
iently is
he
king that they
on-tain no errors after the introdu
tion of
hanges, something that
annot beperformed manually. Despite of the need of automati
 support for error anal-ysis in feature models, there is a la
k of proposals that fo
us on produ
ingerror�free feature models (see Se
tion 7). Taking all this into
onsideration,providing automated support for feature model error analysis
an be
onsid-ered as needed step toward the agilization of SPL development.The other synergisti
 approa
hed taken into
onsideration is tailoring an ag-ile methodology to introdu
e SPL orientation. For that purpose, the agilemethodology that �ts better with the prin
iples of SPL has been
hosen.Williams (2004)
ompares 4 agile methodologies (XP, FDD, SCRUM andCrystal) and
on
ludes that FDD is the agile methodology that has the mostthorough analysis and design pra
ti
es. FDD de
omposes the
ustomer re-quirements in terms of features to obtain a list of features. An iterative andin
remental pro
ess is de�ned to develop one or more features from the fea-tures list and
onstantly deliver the software to the
ustomer in two�weeksiterations. After ea
h iteration and depending on the
ustomer's feedba
k, thelist of features is reviewed. The proposed SPL orientation of FDD is based onthree
ommon points:
• SPL and FDD de
omposes the software in terms of features.
• The list of features and feature models are evolutionary as they are
on-stantly reviewed.
• FDD invest an important e�ort in analysis and design and agility is intro-du
ed in the two�weeks iterations.Introdu
ing feature models in FDD to support SPL prin
iples also implies thatwhenever a feature model
hanges in an iteration, it must be
he
ked to beerror�free. As mentioned before, this is an error�prone a
tivity espe
ially whendealing with large�s
ale SPLs. Therefore, an automated support for featuremodeling is also needed to adapt FDD to SPL prin
iples.In
on
lusion, a �rst step in
ombining SPL and agile methods, independentlyfrom the alternative
hosen, implies the need of an automated te
hnique sup-porting the produ
tion of error�free feature models.Despite of the demand of the FODA report for an automated support toprodu
e error�free feature models and years after it was published, this de-mand still remains and has only been partially dealt with. Previous works su
h3

Im
p

le
m

e
n

ta
ti

o
n

 L
e
v
e
l

D
ia

g
n

o
s
is

 L
e
v
e

l

variables
 Fj, Abi

constraints
 Abi = 1 …

Constraints model

COMPS = { Ri }

SD = { … }

OBS = { … }

Diagnosis model

Feature Model

solutions
 { Fj vj, Abi vi }

 ...

diagnosis
 = { Re }

errors
 dead features, …

explanations
 { Re }

F
e

a
tu

re
 M

o
d

e
l
L

e
v
e
l

Figure 1. Feature model error treatment frameworkas (Mannion, 2002; von der Massen and Li
hter, 2004; Czarne
ki and Kim,2005; Raatikainen et al., 2005) have partially dealt with dete
ting errors infeature models. Apart from Batory (2005), few of them have fo
used on theimportan
e of produ
ing error�free feature models, in
luding the possibilityof providing explanations to the modeler so that errors
an be dete
ted andremoved in an agile way. The work presented in this arti
le
ontributes toautomating the error treatment in feature models by modeling the problemsof dete
ting and explaining errors and providing operational solutions to bothof them. In this way, we think feature modeling
an be agilized, a step towardsSPL agilizing.This arti
le proposes automating error treatment of feature models using athree�level framework, whi
h is depi
ted in Figure 1. The feature model level,whi
h des
ribes the problem of dete
ting and explaining errors in feature mod-els, is presented in Se
tion 3. In Se
tion 4, the diagnosis level, whi
h mapsfeature models onto diagnosis models using theory of diagnosis to formallydes
ribe the problem of dete
ting and explaining errors, is des
ribed. In Se
-tion 5, the implementation level, whi
h implements the diagnosis level using
onstraint satisfa
tion problems, a des
riptive te
hnique that
an be solvedusing o��the�shelf solvers, is des
ribed. Additionally, Se
tion 2 presents somepreliminaries where feature models are brie�y des
ribed and some basi

on-
epts of theory of diagnosis and
onstraint satisfa
tion optimization problemare introdu
ed. In Se
tion 6 we validate our proposal by applying it to a real
ase study. Se
tion 7 summarizes the related work on automated treatmentof errors in feature models. Finally, Se
tion 8 shows some
on
lusions and thepaths to follow in our future work in error analysis and agile software produ
tline. 4

2 Preliminaries2.1 Feature ModelsAs brie�y
ommented in Se
tion 1, feature models are a widely used notationto des
ribe the set of produ
ts in a software produ
t line in terms of features.In feature models, features are hierar
hi
ally linked in a tree�like stru
tureand are optionally
onne
ted by
ross�tree
onstraints. An example on howfeature models are depi
ted is shown in Figure 2, where the feature modeldes
ribes a Home Integration System(HIS) produ
t line.
HIS

(root)

supervision
systems

control services

fire intrusion flood

light control temperature

appliances
control

internet
connection

video on
demand

adsl wifiplc

Or-Relationship

R2 R4

R3

R5
R6

R7
R8

R9

R10 R11

R12

R13

Alternative

Mandatory Feature Optional Feature

Requires Excludes

Choose1+

Choose1

Figure 2. Home Integration System (HIS) feature model diagramAlthough there are many proposals on the type of relationships and theirgraphi
al representation in feature models (see the work by S
hobbens et al.(2007) for a detailed survey), the most usual relationships are the following:Mandatory A
hild feature ismandatory when it is required to appear when-ever its parent feature appears. In the example, R10 is a mandatory rela-tionship between
ontrol (the parent feature) and temperature (the
hildfeature), i.e. whenever a temperature
ontrol is present in a produ
t, theremust be a
ontrol system in that produ
t.Optional A
hild feature is said to be optional when it
an appear or notwhenever its parent feature appears. In the example, R9 is an optional rela-tionship between
ontrol and applian
es
ontrol, i.e. the applian
es
on-trol feature
an be optionally
hosen whenever there is a
ontrol system ina produ
t.Or�relationship A set of
hild features have an or�relationship with theirparent feature when one or more
hild features
an be sele
ted when theparent feature appears. Relationship R11 in Figure 2 is an or�relationshipwhere whenever servi
es is sele
ted, video on demand or internet
onne
-tion or both must be sele
ted. 5

Alternative A set of
hild features are said to be alternative when only oneof them must be sele
ted when their parent feature appears. RelationshipR12 is an alternative relation in Figure 2, where adsl, pl
 or wifi internet
onne
tions must be sele
ted but only one of them in a single produ
t.Requires, Ex
ludes A
ross�tree relationship like A requires B means thatin any produ
t where feature A appears, feature B must also appear. Onthe other hand, a relationship like A ex
ludes B means that both features
annot appear in the same produ
t at the same time. In the sample featuremodel, pl

annot appear in a produ
t if light
ontrol appears and vi
eversa.2.2 Theory of DiagnosisThe well�known theory of diagnosis proposed by Reiter (1987) has been widelyused to diagnose systems�espe
ially ele
troni

ir
uits�, i.e. to determinewhi
h system
omponents, if any, make the system behave abnormally.In Reiter's theory of diagnosis, a system is modeled as a pair (SD ,COMPS)where COMPS is the set of system
omponents and the system des
ription(SD) is a set of predi
ates de�ning the behavioral and stru
tural models of thesystem. In the behavioral model, the normal behavior of system
omponentsis des
ribed as logi
al impli
ations of the negation of their abnormal behavior,denoted as Ab(
) where
 is a system
omponent. Obviously, the negation ofan abnormal behavior is
onsidered as a normal behavior.As an example inspired by the one developed by de Kleer et al. (1990), let us
onsider the two�inverter
ir
uit in Figure 3. An inverter is an digital ele
troni

omponent that inverts its input, i.e. it outputs 1 when its input is 0 and vi
eversa. As the reader
an imagine, the normal behavior of the
ir
uit in Figure3 is outputting its input sin
e is a double inversion, i.e. in(I1) = out(I2).Following Reiter's theory of diagnosis, the system
omponents
an be modeledas COMPS = { I1, I2 }, representing the two inverters. Assuming an inversionfun
tion inv : {0, 1} → {0, 1} su
h that inv(0) = 1 and inv(1) = 0, thebehavioral and stru
tural models, i.e. the system des
ription SD , would bethe following:
I1 I2

in(I1) in(I2)

out(I1) out(I2)

in(I1) in(I2)
out(I1)

out(I2)

0 0

0

1

1 1Figure 3. The two�inverters
ir
uit and its normal behavior6

SD = {¬Ab(I1) ⇒ out(I1) = inv(in(I1)), [behavioral model]
¬Ab(I2) ⇒ out(I2) = inv(in(I2)), [behavioral model]out(I1) = in(I2) } [stru
tural model]In Reiter's theory of diagnosis, in order to diagnose a system a set of ob-servations OBS , expressed as predi
ates, is needed. For example, a set ofobservations for the two�inverter
ir
uit �denoting an abnormal behavior�
ould be { in(I1) = 0, out(I2) = 1 }. In this
ontext, a Reiter's diagnosis of

(SD ,COMPS ,OBS) is de�ned as a minimal set of
omponents with abnor-mal behavior, denoted as ∆. In other words, ∆ ⊆ COMPS is a diagnosis of
(SD ,COMPS ,OBS) if the following set of predi
ates is
onsistent and ∆ isminimal:SD ∪ OBS ∪ { Ab(
) |
 ∈ ∆ } ∪ { ¬Ab(
) |
 ∈ COMPS − ∆ } (1)If the system behaves normally, then ∆ = ∅ and the following set of predi
atesis
onsistent:SD ∪ OBS ∪ { ¬Ab(
) |
 ∈ COMPS } (2)Following with the two�inverters example and the former example observation,to
he
k if the system behaves normally, i.e. if ∆ = ∅, the following set ofpredi
ates must be veri�ed to be
onsistent:

{ ¬Ab(I1) ⇒ out(I1) = inv(in(I1)), [SD (behavioral model)]
¬Ab(I2) ⇒ out(I2) = inv(in(I2)), [SD (behavioral model)]out(I1) = in(I2), [SD (stru
tural model)]in(I1) = 0, out(I2) = 1, [OBS]
¬Ab(I1),¬Ab(I2) } [¬Ab(
) |
 ∈ COMPS]In this
ase, the previous set is not
onsistent. That means that there are
omponents in ∆ that makes the system behave abnormally. A naive algorithmto identify the
omponents with abnormal behavior is to
he
k all elements inthe power set of
omponents PCOMPS against formula (1) and sele
t thosewhi
h are minimal. In the example, PCOMP = { ∅, {I1}, {I2}, {I1, I2} } andtwo diagnoses, ∆1 = {I1} and ∆2 = {I2} make formula (1)
onsistent and areminimal. That means that only one of the inverters fails, but not the two ofthem simultaneously.There are many di�erent te
hniques to diagnose a system based on Reiter'stheory of diagnosis. In Se
tion 5 we show how to use
onstraint satisfa
tionproblem solvers to diagnose feature models, applying the
on
epts des
ribedin this se
tion. 7

2.3 Constraint Satisfa
tion Optimization Problems
A Constraint Satisfa
tion Problem (CSP) is a de
larative paradigm to modeland solve problems using
onstraints (Tsang, 1995). A CSP is de�ned as a3�tuple (V ,D ,C) where V is a set of variables, ea
h ranging on a �nitedomain from set D , and C is a set of
onstraints restri
ting the values thatthe variables
an take simultaneously. A solution to a CSP is an assignment toea
h variable of a value from its
orresponding domain so that all
onstraintsare satis�ed simultaneously. In the
ommon usage of CSPs, we may sear
hfor: i) just one solution, with no preferen
e, ii) all solutions, iii) an optimalsolution by means of an obje
tive fun
tion de�ned in terms of one or morevariables of the problem.Consider for instan
e, the CSP: ({a, b}, { {0, 1, 2}, {0, 1, 2} }, {a + b < 4})where both variables a and b take value in the domain {0, 1, 2} and are
on-strained by {a + b < 4}. The only value assignment that does not satisfya + b < 4 is {a 7→ 2, b 7→ 2}, so there are eight solutions. Nevertheless, if werepla
e the
onstraint with a + b < 0 then the CSP is not satis�able, i.e. thereis no possible value assignment satisfying the
onstraints.In many real�life appli
ations, we do not want to �nd any solution to aCSP but a good one. The quality of a solution is usually measured by anappli
ation�dependent fun
tion
alled obje
tive fun
tion. In these
ases, thegoal is �nding a solution that satis�es all the
onstraints and minimize ormaximize the obje
tive fun
tion. Su
h problems are referred to as ConstraintSatisfa
tion Optimization Problems, that
onsist of a CSP (V ,D ,C) and anoptimization fun
tion O that maps every solution to a numeri
al value.In the previous example, suppose that we de�ne a
onstraint satisfa
tion op-timization problem where the optimization fun
tion is O(s) = a, whi
h max-imizes the value of a. There are two solutions in the original CSP, { {a 7→
2, b 7→ 0}, {a 7→ 2, b 7→ 1} }, that maximizes the value of the obje
tive fun
-tion and are therefore the solutions of the
onstraint satisfa
tion optimizationproblem.There is an important amount of resear
h on algorithms and heuristi
s to solve
onstraint satisfa
tion (optimization) problems, and the set of operationalalternatives is growing, in
luding both
ommer
ial and free solvers.8

3 Feature Model Level: Dealing with Errors in Feature ModelsA feature model is
omposed by features and relationships among them. Afeature model des
ribes the produ
ts in a SPL,
onsidering produ
ts as sets ofsele
ted features. Relationships are added to redu
e the set of produ
ts untilthe SPL is properly des
ribed.Sometimes, introdu
ing new relationships in a feature model may a

identallyremove some produ
ts so the feature model does not des
ribe the real SPL. Onthe other hand, the feature model may not be
orre
tly
onstrained so someprodu
ts that are not in the SPL are still kept in the feature model. Therefore,feature modeling is an error�prone task where representing the
orre
t SPLin terms of features and relationships is not as easy as it seems.We
onsider that an error is an in
orre
t de�nition of relationships that sug-gests that the set of produ
ts des
ribed by a feature model may not mat
h theSPL it des
ribes. Although this de�nition
ould
over many kinds of errors, inthis arti
le we fo
us on three kinds that have already been
onsidered in thebibliography:Dead features A dead feature is a non�instantiable feature, i.e. a featurethat despite of being de�ned in a feature model, it appears in no produ
t inthe software produ
t line. Common
ases where dead features are generatedare shown in Figure 4.Full�mandatory features A
hild feature in a non-mandatory relationshipis a full�mandatory feature if it has to be instantiated whenever its par-ent feature is, i.e. it is neither an optional nor an alternative feature. Themost
ommon
ases are shown in Figure 5. Full�mandatory features usuallyappear together with dead features, as
an be observed for some
ases inFigures 4 and 5.Void feature models A feature model is void if it de�nes no produ
t at all.
DD

D

D DD

D

D

D D D

(a) (b) (c) (d) (e) (f) (g) (h)Figure 4. Common
ases of dead features
FF

F

F

(a) (b) (c) (d) (e)

FFigure 5. Common
ases of full-mandatory features9

ERRORS

DETECTION

EXPLANATION OF

THE ORIGIN OF

ERRORS
Power Line

Errors GIVE SOLUTIONS TO

CONFLICTING RELATIONSHIPS

Conflicting

relationships

Internet

Connection

Power Line

light control Power Line

Control

light control

Feature Model

USER

DECISION

HIS

Supervision

systems
Control Services

fire intrusion flood

light control temperature

appliances

control

Video on

Demand

Internet

Connection

ADSL WirelessPower Line

Error-Free

Feature Model

HIS

Supervision

systems
Control Services

fire intrusion flood

light control temperature

appliances

control

Video on

Demand

Internet

Connection

ADSL WirelessPower LineFigure 6. Two steps pro
ess to analyze errorsThis error is
ommonly
aused by
ontradi
tory relationships among manda-tory features. Void feature models are also known as in
onsistent, invalid orunsatis�able feature models (Batory et al., 2006) although this expressionis
losely related to the method used to dete
t them in the literature. Asa void feature model de�nes no produ
t, no feature is instantiable. Thatmeans that every feature is dead in
luding the root. So we
an
on
ludethat a void feature model is the one whose root is a dead feature.Some authors (see Se
tion 7) have dete
ted that the main
omplexity of pro-du
ing error�free feature models relies on modifying the right relationshipsto remove the errors. If no explanation of the sour
e of errors is provided,the produ
tion of error�free feature models relies on the skills of the featuremodeler. Our obje
tive is assisting the feature modeler in making de
isionsto produ
e error�free feature models. We propose the following two steps toprovide the feature modeler not only the list of errors within a feature modelbut also the explanations for the relationships that
ause the errors, as shownin Figure 6:(1) Dete
tion: This step fo
uses on dete
ting the features that are a�e
tedby the errors from a given feature model that is re
eived as an input.This step sear
hes for dead and full-mandatory features (a void featuremodel is a parti
ular
ase of dead feature) and outputs a list of them.(2) Explanation: For ea
h feature in the list provided by the previous step,all the explanations that are the origin of the errors are provided. Anexplanation
onsists of one or more relationships that must be modi�edto remove an error. For ea
h error, many explanations
an be given.Using
ase (d) in Figure 4 as an example, the ex
ludes relationship isan explanation for the dead feature be
ause it
an be removed to solvethe error. The mandatory relationship
an also be transformed into anoptional relationship to solve the error, so this relationship is anotherexplanation for the dead feature.Following this pro
ess, the feature modeler
an use the explanations providedto
orre
t the errors and produ
ing an error�free feature model. This arti
ledes
ribes an automated support for the dete
tion and explanation of errors infeature models as a
ontribution toward agile feature modeling.10

4 Diagnosis Level: Diagnosing and Explaining ErrorsThe goal of the diagnosis level, as depi
ted in Figure 1, is transforming afeature model into a diagnosis model in order to dete
t errors and providetheir
orresponding explanations. This transformation
an be des
ribed usinga
ir
uit�like representation of feature models, where ea
h relationship
or-responds to a
omponent. Every
omponent or relationship has one binaryinput per feature and one binary output (see Figure 7). Ea
h input representsthe presen
e (1) or absen
e (0) of a feature whereas ea
h output representswhether a relationship is satis�ed (1) or not (0). A produ
t, represented byits sele
ted features, is an instan
e of the feature model if all relationships aresatis�ed, i.e. if all outputs are equal to 1.Figure 7 shows the
ir
uit�like representation of the HIS feature model inFigure 2. For example, the
omponent representing the relationship R5 hastwo inputs, supervision and fire, representing the
orresponding features.If both features are present or absent at the same time in a produ
t, the
HIS root

child out
R1

parent
child

out

supervision

services

parent

child
out

fire

parent

child2

child1 out
R11

internet

video

parent

child3

child1 out
child2

wifi
adsl

plc

parent

child
out

R2

R5

child
out

intrusion R6

parent

child
out

flood
R7

parent

parent
child

out

control
parent

child
out

light control

R3

R8

child
out

appliances control
R9

parent

child
out

temperature
R10

parent

R4

parent
child

out

R12

R13

Mandatory

Optional

Or-relationship

Alternative

Requires

root Root

Excludes

out

out

out

out

out

out

out

child

child

parent

child

parent

child1

parent

child

parent

child

parent

childn

...

child1

parent

childn

...

Legend

Figure 7. Cir
uit�like representation of the HIS feature model11

R5
omponent outputs 1; otherwise it outputs 0, whi
h
orresponds to thesemanti
s of mandatory relationships (see Se
tion 2.1).4.1 Transforming a Feature Model into a Diagnosis ModelAs des
ribed in se
tion 2.2, COMPS , SD and OBS sets must be de�ned torepresent a feature model as a diagnosis model. In our
ir
uit�like representa-tion of feature models, the relationships are
onsidered as the
omponents ofthe
ir
uit to be diagnosed. In other words, COMPS = { R1, . . . ,Rn } whereRi represents the Ri relationship in the feature model.To de�ne the SD set, some notation must be previously adopted. AllRi
ompo-nents, ex
ept those representing a root relationship, have one parent input andone or more
hild inputs (see legend in Figure 7). The expression parent(Ri)denotes the parent input of the Ri
omponent and
hild(Ri) denotes its
hildinput. Whenever a
omponent has a variable number of
hildren (or and alter-native relationships), the expression
hildj (Ri) denotes the j th
hild input of
omponent Ri , with 1 ≤ j ≤ m. For all type of
omponents, out(Ri) denotestheir output.On
e the notation is de�ned, the behavioral model of the diagnosis system
an be spe
i�ed as shown in Figure 8. For the sake of simpli
ity, all de�nitionshave the form ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (behaviour1(Ri))), wherebehaviour1(Ri) is a predi
ate relating the inputs of the Ri
omponent that mustType of Ri BehaviorRoot ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (
hild(Ri) = 1))Mandatory ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (
hild(Ri) = 1 ⇔ parent(Ri) = 1))Optional ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (
hild(Ri) = 1 ⇒ parent(Ri) = 1))Alternative ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (

(parent(Ri) = 1 ∧
∑mj=1
hildj (Ri) = 1) ∨

(parent(Ri) = 0 ∧
∑mj=1
hildj (Ri) = 0)))Or ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (

(parent(Ri) = 1 ∧
∑mj=1
hildj (Ri) ≥ 1) ∨

(parent(Ri) = 0 ∧
∑mj=1
hildj (Ri) = 0)))Requires ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (parent(Ri) = 1 ⇒
hild(Ri) = 1))Ex
ludes ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ (parent(Ri) = 1 ⇒
hild(Ri) = 0))Figure 8. Mapping a feature model onto a diagnosis behavioral model12

hold when its output is 1. There is no need to in
lude
omponent behaviourwhen their output is 0 in SD be
ause, sin
e all possible input and outputvalues are { 0, 1 }, it
an be dedu
ed that ¬Ab(Ri) ⇒ (out(Ri) = 0 ⇔
(¬behaviour1(Ri))).To
omplete the de�nition of SD , the stru
tural model that des
ribes howfeature signals and
omponent inputs bind must be de�ned. As an example,the stru
tural model
orresponding to the
ir
uit in Figure 7 is shown in Figure9.
hild(R1) = HIS [stru
tural model℄parent(R2) = HIS
hild(R2) = supervisionparent(R5) = supervision
hild(R6) = fire

· · ·

¬Ab(R1) ⇒ (out(R1) = 1 ⇔ (
hild(R1) = 1)) [behavioral model℄
¬Ab(R2) ⇒ (out(R2) = 1 ⇔ (parent(R2) = 1 ⇔
hild(R2) = 1))

¬Ab(R3) ⇒ (out(R3) = 1 ⇔ (parent(R3) = 1 ⇔
hild(R3) = 1))

· · ·Figure 9. Diagnosis system des
ription
orresponding to Figure 74.2 Diagnosing a Feature ModelThe third element in a diagnosis model is the set of observations. Diagnosinga system relies on
onsisten
y
he
king, i.e. dete
ting
ontradi
tions betweenthe system des
ription and a given set of observations assuming that all
om-ponents are behaving normally. In the
ase of diagnosing feature models, weassume that all relationships are satis�ed, i.e. ∀ni=1
out(Ri) = 1, and for
ingone or more features to be present or absent, as des
ribed in the followingse
tions.4.2.1 Diagnosing Dead FeaturesA dead feature is a feature that does not appear in any produ
t. In other words,if ∀ni=1

out(Ri) = 1, that feature
annot be present in any input. By translatingthis
on
ept into a diagnosis model, we
an a�rm that if the following set of13

predi
ates is not
onsistent, then fdead is a dead feature:SD ∪ { ∀ni=1
out(Ri) = 1, fdead = 1 } ∪ { ¬Ab(Ri) | Ri ∈ COMPS }Applying the theory of diagnosis we may determine all possible diagnoses

{∆1, · · · , ∆k} that make fdead be a dead feature. Ea
h ∆i is a subset of
om-ponents, i.e. relationships in the feature model, that makes the following setof predi
ates
onsistent:SD ∪ { ∀ni=1
out(Ri) = 1, fdead = 1 }

∪ { Ab(Ri) | Ri ∈ ∆i }
∪ { ¬Ab(Ri) | Ri ∈ COMPS − ∆i }In the HIS sample feature model, the pl
 feature is a dead feature be
ausethe observation OBS = {∀ni=1

out(Ri) = 1, pl
 = 1} is not
onsistent withthe system des
ription assuming all
omponents are behaving normally. Thereason is that the pl
 feature is in
ompatible with the light
ontrol feature,whi
h is a mandatory one. This situation is re�e
ted in the set of diagnosesfor that observation, ∆1 = {R3}, ∆2 = {R8} and ∆3 = {R13}, whi
h indi
atesthat relationships R3, R8 and R13 are responsible of making pl
 a dead feature.If R3 or R8 were turned into optional relationships or R13 were turned into arequires relationship or removed, pl
 would be
ome a live feature.4.2.2 Diagnosing Full�Mandatory FeaturesA full�mandatory feature is a feature that must be present in a produ
t when-ever its parent feature is, despite of being a
hild feature in a non�mandatoryrelationship, i.e. optional, or�relationship or alternative. Following a similarrationale than for diagnosing dead features, it means that if Ri is a non�mandatory relationship, there
annot be any produ
t in whi
h parent(Ri) = 1and
hildj (Ri) = 0, being
hildj (Ri) the
hild input of Ri bound to the featureto be
he
ked as full�mandatory. In diagnosis terms, if the following set ofpredi
ates is not
onsistent:SD ∪ { ∀ni=1
out(Ri) = 1, parent(Ri) = 1,
hildj (Ri) = 0 }

∪ { ¬Ab(Ri) | Ri ∈ COMPS }then the feature bound to
hildj (Ri) is a full�mandatory feature. The expla-nations for this kind of error follow the same reasoning as for dead features,i.e. determining the ∆i diagnoses. 14

4.2.3 Diagnosing Void Feature ModelsA feature model is void if there not exist any produ
t satisfying all its relation-ships, i.e. if it does not des
ribe any produ
t at all. This situation happenswhen the root feature is itself a dead feature, so it
an be diagnosed fol-lowing the dead features diagnosis rationale, i.e. if OBS = {∀ni=1
out(Ri) =

1,
hild(Rroot) = 1}makes the system not
onsistent, the
orresponding modelis a void feature model.For the rest of the arti
le, void feature models will be
onsidered as a parti
ular
ase of dead features and no spe
ial treatment will be des
ribed.5 Implementation Level: Modeling Diagnosis Problem as a CSPOne of the main advantages of de�ning error dete
tion and explanation interms of theory of diagnosis is having the problem des
ribed in an implemen-tation�independent way. In this work, we propose an implementation based on
onstraint programming, however any other implementation
ould be proposedrelying on the previous diagnosis level.Our proposal is inspired by two main sour
es: on the one hand, Benavideset al. (2005) proposed a dire
t mapping from a feature model onto a CSPto extra
t information about them; on the other hand, Fattah and De
hter(1995) proposed a general transformation from diagnosis problems into CSPs.5.1 Transforming a Diagnosis Model into a CSPThe �rst step to des
ribe a CSP is determining the set of variables (V) andtheir domains (D). In our
ase, we distinguish two kinds of variables de�nedover domain {0, 1}: feature variables, VF = {F1, · · · ,Fm},
orresponding tothe features variables in the stru
tural model of the diagnosis system; and ab-normality variables, VAb = {Ab1, · · · ,Abn},
orresponding to the abnormalityindi
ators in the behavioral model of the diagnosis system.Noti
e that there are no variables
orresponding to the outputs of the
ompo-nents representing the relationships in the feature models. Sin
e out(Ri) = 1is a
ondition present in all the observations required for diagnosing a featuremodel, it
an be assumed that it always holds and therefore simplify the be-havioral model de�nitions from ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ behaviour(Ri))into ¬Ab(Ri) ⇒ behaviour(Ri) and their
orresponding
onstraints in a simi-lar manner (see Figure 10). 15

Figure 10. Transforming diagnosis model in Figure 9 into a CSPThe se
ond step is de�ning the
onstraints of the CSP. For that purpose, astraightforward transformation from the stru
tural and behavioral model ofthe diagnosis system into a set of
onstraints is performed, as depi
ted inFigure 10 using Optimization Programming Language (OPL), a widely usedlanguage to represent
onstraint programming problems (Hentenry
k, 1999).Noti
e that predi
ates of the form ¬Ab(Ri) are translated into a
ondition onthe
orresponding abnormality variable of the form Abi = 0 and that parentand
hild expressions are substituted by the
orresponding feature variable inthe stru
tural model of the diagnosis system.As previously mentioned in Se
tion 2.3, a solution to a CSP is an assignmentof domain values to the variables that makes all the
onstraints hold. Takinginto a

ount that a valid produ
t must satisfy all the relationships in a featuremodel, the derived CSP
an be used to determine the set of valid produ
tsde�ned by a feature model if the values of abnormality variables are all setto zero in the
onstraints set, i.e. {Abj = 0 | Abj ∈ VAb}. All the solutions tothe resulting CSP would be assignments to the feature variables Fi , i.e. validprodu
t
on�gurations in whi
h the assignment Fi 7→ 1 means Fi is presentin a produ
t
on�guration whereas Fi 7→ 0 means that Fi is absent.5.2 Diagnosing a Feature ModelThe key element for diagnosing a system is the set of observations. As pre-viously des
ribed in Se
tion 4.2, in order to diagnose a feature model, allrelationships are assumed to be satis�ed, ∀ni=1
out(Ri) = 1, and one or morefeatures are for
ed to be present or absent depending on the kind of error tobe diagnosed.When the diagnosis system is transformed into a CSP, observations be
ome
onditions of the form Fi = 0 or Fi = 1 that are added to the set of
on-straints, and
onsisten
y
he
king be
omes satis�ability
he
king. In the next16

se
tions the additional
onstraints derived for ea
h kind of error based on theobservations proposed in Se
tion 4.2 are des
ribed.5.2.1 Dete
ting Dead FeaturesAs des
ribed in Se
tion 4.2.1, in order to diagnose if a feature fdead is a deadfeature in a feature model, the following set of predi
ates must be
he
ked for
onsisten
y:SD ∪ { ∀ni=1
out(Ri) = 1, fdead = 1 } ∪ { ¬Ab(Ri) | Ri ∈ COMPS }Transforming this into a CSP implies that the following
onditions must beadded to the set of
onstraints of the CSP derived from the diagnosis model:

{Abj = 0 | Abj ∈ VAb} ∪ {Fdead = 1}. The
onsisten
y
he
king is then re-pla
ed by a satis�ability
he
king, i.e. if the augmented CSP is not satis�able,fdead is a dead feature.5.2.2 Dete
ting Full�mandatory FeaturesIn the
ase of full�mandatory features, the transformation of the diagnosissystem into a CSP implies that the following set of
onditions must be addedto the set of
onstraints of the derived CSP: {Abj = 0 | Abj ∈ VAb} ∪ {Ffm =
0} ∪ {Fp = 0}, where Ffm is the full�mandatory feature and Fp it is itsparent feature. If the augmented CSP is not satis�able, Ffm is a full�mandatoryfeature.5.3 Explaining errorsOn
e the errors have been dete
ted, their
auses must be determined, i.e. whi
hare the relationships generating the errors. In the diagnosis level, a diagnosisis a minimal set of relationships that behave abnormally and that explains theerrors in the feature model. Transforming this into a CSP, a diagnosis ∆ is aminimal set of abnormality variables ∆ ⊆ VAb su
h that {Abk 7→ 1 | Abk ∈ ∆}is in the set of solutions of the CSP. In other words, not all the solutions areinteresting but only those minimizing the number of failing relationships, i.e.the number of abnormality variables taking value 1. As des
ribed in Se
tion2.3, the CSP for determining ∆ sets is a CSOP in whi
h the obje
tive fun
tion,∑mk=1

Abk , must be minimized.The set of
onstraints of a CSP for determining the
ause of an error is the samethan for dete
ting the error ex
ept that abnormality variables are unbound.17

For the sample feature model in Figure 2, after dete
ting that pl
 is a deadfeature, the CSOP for providing explanations would be the following:
(VF ∪ VAb ,D ,C ∪ {pl
 = 1},min m∑k=1

Abk)From all its solutions, and after dis
arding feature variables and abnormalityvariables taking value 0 �they are not relevant for this purpose�, three ∆set are found: {Ab3 7→ 1}, {Ab8 7→ 1} and {Ab13 7→ 1}. Sin
e ea
h abnormal-ity variable is asso
iated with a relationship in the feature model, the threeexplanations of why pl
 is a dead feature are ∆1 = {R3}, ∆2 = {R8} and
∆3 = {R13}.6 Applying our Proposal to a Real CaseWe have applied the implementation level des
ribed in this paper during asoftware produ
t line development proje
t. The proje
t intends to build a setof Enterprise Resour
e Planning (ERP) produ
ts in the
ontext of SAUCE, anenvironmental resour
es management SPL. SAUCE
omprises a set of prod-u
ts to store and exploit the existing information about �ora and fauna indi�erent rivers. The aim of the SPL is to produ
e
ustomized software thathelps to the management and
onservation of these �uvial e
osystems.As a �rst result of domain engineering a
tivities, a large�s
ale feature modelwas obtained. We followed an approa
h inspired by the FDD methodologyto develop and re�ne the ERP feature model in two�week iterations. In ea
hiteration the feature model was reviewed a

ording to
hanges suggested bydomain and appli
ation engineers using our FAMA tool des
ribed by Bena-vides et al. (2007). FAMA is an E
lipse plugin for feature model edition andanalysis. It has a multisolver analysis engine that performs operations su
has produ
ts
ounting, produ
ts �ltering and
ommonality analysis by meansof di�erent CSP, BDD or SAT solvers. FAMA has been extended to supportthe error analysis implementation des
ribed in this arti
le. This way, FAMAassists the produ
tion of error�free feature models by dete
ting and explainingthe emerging errors. Some
aptures of the pro
ess are shown in Figure 11. Theempiri
al results obtained from FAMA in ea
h iteration are presented in Fig-ure 12. Ea
h row
orresponds to an iteration. Five iterations were performedover the feature model and their data
olle
ted. The
olumns are labeled asfollows:
• #F: number of features of the feature model.
• #R: number of relationships without
onsidering
ross�tree relationships,i.e. requires and ex
ludes relationships.18

Figure 11. FAMA tool has supported the error dete
tion and explanation in SAUCEdevelopment
• #CTR: number of
ross�tree relationships.
• #FC: number of added plus removed features respe
ting to the previousiteration.
• #RC: number of
hanges a�e
ting the existing relationships plus numberof added and removed relationships respe
ting to the previous iteration.
• #CTRC: number of added plus removed
ross�tree relationships respe
tingto the previous iteration.
• #P: approximate number of produ
ts represented by the feature model.
• #DF: number of dead features dete
ted by our tool and
orre
ted by theuser.
• VFM: if the resulting feature model in
luded an error to make it to be void.
• #FMF: total number of full�mandatory features dete
ted by our tool and
orre
ted by the user.In ea
h iteration, as a
onsequen
e of the
hanges in the SPL requirementsand therefore in the feature model, new errors arose even when the previousfeature model was error�free.As a result of our experien
e, a high number of
ross�tree relationships oftenhinder the engineers to keep a re
ord of the arising errors. Our tool has sup-ported the evolution of the ERP feature model easing and guaranteeing theprodu
tion of an error�free feature model. Supporting a qui
ker evolution of19

It #F #R #CTR #FC #RC #CTRC #P #DF VFM #FMF1 61 56 54 - - - 3, 59 · 1010 1 No 22 76 70 86 15 14 32 2, 96 · 1013 1 No 83 79 73 88 3 3 2 1, 17 · 1014 0 No 04 84 78 102 5 9 14 5, 18 · 1014 2 No 45 86 80 104 2 2 3 1, 46 · 1016 0 No 6Figure 12. Evolution of the feature model of an ERP SPL
SAUCE

Basic

Security Export Storage

Data mng
Unmanaged

data
Queries Cartography Survey

50 features 11 features

Excel XML Text

choose1

Oracle Pool

User

Profile

Access Module

Technical Fishermen

Maps

server

Info

Preferences CrayfishFigure 13. ERP feature modelfeature models redu
es the time invested on this task, allowing the engineersto
on
entrate in others. The feature model resulting from this pro
ess is de-pi
ted in Figure 13. Noti
e that for the sake of simpli
ity we have omittedpart of the features on the feature model and all the
ross�tree relationships.7 Related WorkAlthough the automated error analysis in feature models was already identi-�ed as a fundamental task in the original FODA report by Kang et al. (1990),few authors have dealt with it. As a matter of fa
t, there has not been a sem-inal approa
h to automati
ally analyze errors in feature models as far as weknow.Our interest in automating error dete
tion and explanation arose from thework of von der Massen and Li
hter (2004), where the authors proposed a
ategorization of what they
all de�
ien
ies (referred to as errors in this ar-ti
le) in three levels of severity: redundan
y, anomaly and in
onsisten
y. Re-dundan
ies appear when relationships among features are modeled in multipleways so they
an be removed and the set of produ
ts represented by a featuremodel remains the same. In some
ases, redundan
ies
an be intentionally in-20

trodu
ed to emphasize a relationship. We have not dealt with them in thisarti
le be
ause they do not �t in our
on
ept of error. Anomalies appear whensome produ
ts are lost due to a mismodelling but the feature model still de-�nes some produ
ts. Anomalies generate dead and full�mandatory features.Finally, in
onsisten
ies appear when the feature model
ontains
ontradi
toryrelationships removing a set of produ
ts (dead features) or making it impos-sible to derive produ
ts (void feature models). Unfortunately, von der Massenand Li
hter's proposal la
ks rigorous de�nitions and no automated analysis issuggested.Regarding the works dealing with automated error analysis, we distinguishbetween those that only deal with error dete
tion and those also
oping witherrors explanation. In the �rst group we mention the work of Mannion (2002);Zhang et al. (2004); Czarne
ki and Kim (2005).Mannion uses �rst�order logi
 to determine if a feature model is void or not,but no other kind of error is dete
ted. Zhang et al. suggest the use of anautomated tool support based on the SVM System (M
Millan, 1992) to dete
tvoid feature models and dead features. Finally, Czarne
ki and Kim proposethe dete
tion of void feature models and dead features as a marginal result ofapplying binary de
ision diagrams to represent feature models.In the se
ond group where errors explanation is dealt with, Batory (2005);Sun et al. (2005); Wang et al. (2005) work on automated error explanationbut they are only able to dete
t whether a feature model is void or not andwhi
h are the
on�i
ting relationships.Batory translates feature models into propositional formulas and uses SATsolvers (solvers for propositional
al
ulus) and Logi
 Truth Maintenan
e Sys-tems (LTMS) algorithms. Sun et al. translates feature models into Alloy, asimple stru
tural modeling language based on �rst�order logi
 (Ja
kson, 2002).Alloy uses a SAT solver to analyze the relationships that generate a void fea-ture model. Finally, Wang et al. propose the translation of feature models intoan OWL DL ontology. OWL DL is a expressive yet de
idable sublanguage ofOWL (Ontology Web Language). It is possible to use automated tools su
h asRACER, proposed by Haarslev and Moller (2001) and used in this
ase to theautomati
ally analyze feature models. A summary of the reviewed proposalsis presented in Figure 14.Although not all the previous proposals allow the analysis of dead and fullmandatory features, this is not their main drawba
k be
ause it is
ertainlypossible to extend them. In our opinion, the main disadvantage of these pro-posals is that they la
k abstra
tion. It is in the sense that they are useful whenfeature models are analyzed using the
orresponding formalisms and tools butthey are not extrapolatable to other ways of analyzing errors in feature mod-21

Figure 14. Summary of proposals for the automated error analysis of feature models
els. By
ontrast, in this paper, we have presented a more abstra
t proposal,be
ause we use theory of diagnosis prin
iples, a well�established resear
h �eldwith strong theoreti
al foundations, as a more abstra
t level of spe
ifying theanalysis of errors in feature models.Due to its level of abstra
tion, our proposal allows extensions in both diagnosisand implementation levels. Other errors
an be added in the diagnosis leveland implemented in the implementation level that
an also be de�ned usingother tools su
h as Binary De
ision Diagrams (BDD) or SAT solvers insteadof CSP solvers.New kinds of error
an appear when dealing with extended feature models(Benavides et al. (2005); Batory (2005); Batory et al. (2006)) where featureattributes are in
luded in the model. Relationships among attributes
an also
onstrain the model, produ
ing dead features for example. Benavides et al.(2005) proposed a dire
t mapping from a feature model onto CSP that rep-resents attributes. As we have proposed a general s
hema that supports newerrors just by de�ning the observation that dete
ts them in the diagnosis level,and an implementation to deal with attributes already exists, we think thatwe
an extend our proposal to support errors analysis in extended featuremodels. This is an important limitation of the other proposals.22

8 Con
lusions and Future workWe have dis
ussed our vision on how SPL and agile methods
an
ome to-gether, either by applying agile prin
iples to SPL methodologies or by tailor-ing an existing agile methodology to support SPL development. Independentlyfrom the
hosen alternative, supporting automati
 error dete
tion and expla-nation is an important
ontribution that
an be a �rst step in bringing agileprin
iples and SPL together. As feature modeling is an error�prone task, ana
tivity that
he
ks the feature model is needed. Large�s
ale feature modelsmay
ontain hundreds of features and represent thousands of produ
ts as it
an be seen in our example
ase. In these
ases, an automated support forerror analysis is needed as doing it by hand is not feasible. Our proposal sup-ports an automated feature model error analysis that is therefore, a �rst stepin our roadmap to integrating agile and SPL te
hniques.Our proposal relies on theory of diagnosis to represent the problem of errordete
tion and explanation in general terms. The advantage of using this ab-stra
t representation is twofold: many di�erent implementations
an be usedin the implementation layer and the diagnosis level
an be extended with newkinds of error just by de�ning the observations that dete
ted them.By relying on the extensibility of our proposal we have dete
ted some futureextensions to our proposal. In programming languages, errors
orre
tion isa mature topi
. Explanations give the user su�
ient information to
orre
terrors. We will study how to use explanations to assist the user with the
orre
tion of errors.As several implementations
an be used to re�ne the diagnosis level, it isimportant to
ompare how ea
h implementation performs to
hoose the bestof them. Our future work will
ompare the performan
e of several SAT, CSPand BDD solvers.We have only fo
used on errors analysis in basi
 feature models, but they
anbe extended with attributes where new kinds of error
an appear. Our futurework will extend our proposal to deal with extended feature models.Regarding the integration of SPL and agile methods integration we would liketo thoroughly study both alternatives. Spe
i�
ally, we plan to tailor all thestages in FDD to fully support SPL based on feature models.Although we have presented the most used notation of feature models, it isimportant to noti
e that there are other notations with di�erent semanti
s asdes
ribed by S
hobbens et al. (2007). An uni�ed language for feature modelingis needed and if this language is adopted our idea will remain valid but we mayhave to
hange the mapping from this new language to theory of diagnosis.23

A
knowledgmentsWe would like to thank Ri
hard Page, Patri
k Heymans and Pierre�YvesS
hobbens for their useful
omments and Manuel Nieto for his e�ort on ap-plying our ideas in an industrial
ase study.Referen
es[1℄ Batory, D., 2005. Feature models, grammars, and propositional formulas. In:Software Produ
t Lines Conferen
e, LNCS 3714. pp. 7�20.[2℄ Batory, D., Benavides, D., Ruiz-Cortés, A., 2006. Automated analysis of fea-ture models: Challenges ahead. Communi
ations of the ACM 49 (12), 45�47.[3℄ Batory, D., Sarvela, J., Raus
hmayer, A., 2004. S
aling step-wise re�nement.IEEE Trans. Software Eng. 30 (6), 355�371.[4℄ Benavides, D., Ruiz-Cortés, A., Trinidad, P., 2005. Automated reasoning onfeature models. LNCS, Advan
ed Information Systems Engineering: 17thInternational Conferen
e, CAiSE 2005 3520, 491�503.[5℄ Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A., 2007. FAMA: Toolinga framework for the automated analysis of feature models. In: Pro
eedingof the First International Workshop on Variability Modelling of Software-intensive Systems (VAMOS). pp. 129�134.[6℄ Czarne
ki, K., Antkiewi
z, M., Kim, C. H. P., Lau, S., Pietroszek, K., 2005.Model-driven software produ
t lines. In: OOPSLA '05: Companion to the20th annual ACM SIGPLAN
onferen
e on Obje
t-oriented programming,systems, languages, and appli
ations. ACM Press, New York, NY, USA, pp.126�127.[7℄ Czarne
ki, K., Kim, P., 2005. Cardinality-based feature modeling and
on-straints: A progress report. In: Pro
eedings of the International Workshopon Software Fa
tories At OOPSLA 2005.[8℄ de Kleer, J., Ma
kworth, A. K., Reiter, R., 1990. Chara
terizing diagnoses.In: AAAI. pp. 324�330.[9℄ Fattah, Y. E., De
hter, R., 1995. Diagnosing tree-de
omposable
ir
uits. In:IJCAI. pp. 1742�1749.[10℄ Fowler, M., Highsmith, J., August 2001. The agile manifesto. In SoftwareDevelopment, Issue on Agile Methodologies.[11℄ Haarslev, V., Moller, R., 2001. Des
ription of the RACER system and itsappli
ations. In: Des
ription Logi
s.URL http://www.ra
er-systems.
om[12℄ Hentenry
k, P. V., 1999. The OPL optimization programming language. MITPress, Cambridge, MA, USA.[13℄ Ja
kson, D., 2002. Alloy: a lightweight obje
t modelling notation. ACM Trans.Softw. Eng. Methodol. 11 (2), 256�290.24

[14℄ Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S., Nov. 1990.Feature�Oriented Domain Analysis (FODA) Feasibility Study. Te
h. Rep.CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon Uni-versity.[15℄ Mannion, M., 2002. Using First-Order Logi
 for Produ
t Line Model Vali-dation. In: Pro
eedings of the Se
ond Software Produ
t Line Conferen
e(SPLC2). LNCS 2379. Springer, San Diego, CA, pp. 176�187.[16℄ M
Millan, K. L., 1992. The svm system.URL http://www.
s.
mu.edu/∼model
he
k/smv.html[17℄ Pohl, K., Bö
kle, G., , van der Linden, F., 2005. Software Produ
t Line Engi-neering: Foundations, Prin
iples, and Te
hniques. Springer�Verlag.[18℄ Raatikainen, M., Soininen, T., Männistö, T., Mattila, A., 2005. Chara
ter-izing
on�gurable software produ
t families and their derivation. SoftwarePro
ess: Improvement and Pra
ti
e 10 (1), 41�60.[19℄ Reiter, R., 1987. A theory of diagnosis from �rst prin
iples. Arti�
ial Intelli-gen
e 32 (1), 57�95.[20℄ S
hobbens, P., P. Heymans, J. T., Bontemps, Y., Feb 2007. Generi
 semanti
sof feature diagrams. Computer Networks 51 (2), 456�479.[21℄ So
hos, P., Philippow, I., Riebis
h, M., 2004. Feature-oriented development ofsoftware produ
t lines: Mapping feature models to the ar
hite
ture. Obje
t-Oriented and Internet-Based Te
hnologies, 138�152.[22℄ Sun, J., Zhang, H., Li, Y., Wang, H., 2005. Formal semanti
s and veri�
ationfor feature modeling. In: Pro
eedings of the ICECSS05.[23℄ Tsang, E., 1995. Foundations of Constraint Satisfa
tion. A
ademi
 Press.[24℄ von der Massen, T., Li
hter, H., 2004. De�
ien
ies in feature models. In: Man-nisto, T., Bos
h, J. (Eds.), Workshop on Software Variability Managementfor Produ
t Derivation - Towards Tool Support.[25℄ Wang, H., Li, Y., Sun, J., Zhang, H., Pan, J., November 2005. A semanti
 webapproa
h to feature modeling and veri�
ation. In: Workshop on Semanti
Web Enabled Software Engineering (SWESE'05).[26℄ Williams, L., 2004. A survey of agile development methodologies.URL http://agile.
s
.n
su.edu/SEMaterials/AgileMethods.pdf[27℄ Zhang, W., Zhao, H., Mei, H., 2004. A propositional logi
-based method forveri�
ation of feature models. In: Davies, J. (Ed.), ICFEM 2004. Vol. 3308.Springer�Verlag, pp. 115�130.

25

