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Abstract

Software product lines (SPL) and agile methods share the common goal of rapidly
developing high quality software. Although they follow different approaches to achieve
it, some synergies can be found between them by 7) applying agile techniques to SPL
activities so SPL development becomes more agile; and i) tailoring agile method-
ologies to support the development of SPL. Both options require an intensive use
of feature models, which are usually strongly affected by changes on requirements.
Changing large scale feature models as a consequence of changes on requirements is
a well-known error—prone activity. Since one of the objectives of agile methods is a
rapid response to changes in requirements, it is essential an automated error analy-
sis support in order to make SPL development more agile and to produce error—free
feature models.

As a contribution to find the intended synergies, this article sets the basis to pro-
vide an automated support to feature model error analysis by means of a framework
which is organized in three levels: a feature model level, where the problem of error
treatment is described; a diagnosis level, where an abstract solution that relies on
Reiter’s theory of diagnosis is proposed; and an implementation level, where the
abstract solution is implemented by using constraint satisfaction problems (CSP).

To show an application of our proposal, a real case study is presented where the
Feature-Driven Development (FDD) methodology is adapted to develop an SPL.
Current proposals on error analysis are also studied and a comparison among them
and our proposal is provided. Lastly, the support of new kinds of errors and different
implementation levels for the proposed framework are proposed as the focus of our
future work.

Keywords: feature models, agile methods, error analysis, theory of diagnosis, con-
straint programming
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1 Introduction and Motivation

The so called agile methods have arisen to face up to the problems that tra-
ditional, heavyweight software development methodologies have not satisfac-
torily solved yet. Agile methods pursue some main goals which are described
in the Agile Manifesto (Fowler and Highsmith, 2001), where a number of key
changes to traditional software development are proposed. For example: focus-
ing the efforts during development in the interaction with customers through
working software; collaborating with customers during development instead of
negotiating contracts at the beginning of development; adapting software to
changing requirements, etc. In other words, the aim of agile methods is pro-
ducing high—quality software products in less time and cost than using tra-
ditional software development methodologies by reducing unnecessary tasks
and increasing productivity.

On the other hand, the software product line (SPL) approach intend to develop
a set or family of software products within a concrete application domain.
In a SPL, software products are developed from a set of shared, common
assets —the core assets— and a set of product—specific assets. The core—assets
development process is known as domain engineering whereas the product
specific assets development process is known as application engineering (Pohl
et al., 2005).

Although both approaches are very different from each other, they share the
aim of reducing development time and cost while quality is not compromised,
even increased. Our experience applying both approaches separately has made
us think that is possible to find some synergies by sharing some practices and
techniques so that SPL. development becomes more agile and agile methods
can adopt an SPL-like orientation.

Considering the agilization of SPL development, this article is focused on pro-
cesses related to the so—called feature models, which are used to describe the
products in an SPL and are intensively used in SPL development (see Section
2.1). For example, Czarnecki et al. (2005) and Sochos et al. (2004) propose in-
ferring the core architecture from feature models; Batory et al. (2004) propose
using feature oriented programming (FOP) to implement an SPL decompos-
ing the architecture into features and automatically deriving products from
a selection of their features; Benavides et al. (2005) use feature models to
support decision making during production.
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As many processes in SPL development use feature models, applying some
agile principles to frequent operations on feature models can make SPL devel-
opment more agile, especially during the domain engineering process in which
large—scale feature models must be developed. As Kang et al. (1990) stated
in the Feature—Oriented Domain Analysis (FODA) report, an important task
when using large-scale feature models efficiently is checking that they con-
tain no errors after the introduction of changes, something that cannot be
performed manually. Despite of the need of automatic support for error anal-
ysis in feature models, there is a lack of proposals that focus on producing
error—free feature models (see Section 7). Taking all this into consideration,
providing automated support for feature model error analysis can be consid-
ered as needed step toward the agilization of SPL. development.

The other synergistic approached taken into consideration is tailoring an ag-
ile methodology to introduce SPL orientation. For that purpose, the agile
methodology that fits better with the principles of SPL has been chosen.
Williams (2004) compares 4 agile methodologies (XP, FDD, SCRUM and
Crystal) and concludes that FDD is the agile methodology that has the most
thorough analysis and design practices. FDD decomposes the customer re-
quirements in terms of features to obtain a list of features. An iterative and
incremental process is defined to develop one or more features from the fea-
tures list and constantly deliver the software to the customer in two weeks
iterations. After each iteration and depending on the customer’s feedback, the
list of features is reviewed. The proposed SPL orientation of FDD is based on
three common points:

e SPL and FDD decomposes the software in terms of features.

e The list of features and feature models are evolutionary as they are con-
stantly reviewed.

e FDD invest an important effort in analysis and design and agility is intro-
duced in the two—weeks iterations.

Introducing feature models in FDD to support SPL principles also implies that
whenever a feature model changes in an iteration, it must be checked to be
error—free. As mentioned before, this is an error—prone activity especially when
dealing with large—scale SPLs. Therefore, an automated support for feature
modeling is also needed to adapt FDD to SPL principles.

In conclusion, a first step in combining SPL. and agile methods, independently
from the alternative chosen, implies the need of an automated technique sup-
porting the production of error—free feature models.

Despite of the demand of the FODA report for an automated support to
produce error free feature models and years after it was published, this de-
mand still remains and has only been partially dealt with. Previous works such
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Figure 1. Feature model error treatment framework

as (Mannion, 2002; von der Massen and Lichter, 2004; Czarnecki and Kim,
2005; Raatikainen et al., 2005) have partially dealt with detecting errors in
feature models. Apart from Batory (2005), few of them have focused on the
importance of producing error free feature models, including the possibility
of providing explanations to the modeler so that errors can be detected and
removed in an agile way. The work presented in this article contributes to
automating the error treatment in feature models by modeling the problems
of detecting and explaining errors and providing operational solutions to both
of them. In this way, we think feature modeling can be agilized, a step towards
SPL agilizing.

This article proposes automating error treatment of feature models using a
three—level framework, which is depicted in Figure 1. The feature model level,
which describes the problem of detecting and explaining errors in feature mod-
els, is presented in Section 3. In Section 4, the diagnosis level, which maps
feature models onto diagnosis models using theory of diagnosis to formally
describe the problem of detecting and explaining errors, is described. In Sec-
tion 5, the implementation level, which implements the diagnosis level using
constraint satisfaction problems, a descriptive technique that can be solved
using off the shelf solvers, is described. Additionally, Section 2 presents some
preliminaries where feature models are briefly described and some basic con-
cepts of theory of diagnosis and constraint satisfaction optimization problem
are introduced. In Section 6 we validate our proposal by applying it to a real
case study. Section 7 summarizes the related work on automated treatment
of errors in feature models. Finally, Section 8 shows some conclusions and the
paths to follow in our future work in error analysis and agile software product
line.



2 Preliminaries

2.1 Feature Models

As briefly commented in Section 1, feature models are a widely used notation
to describe the set of products in a software product line in terms of features.
In feature models, features are hierarchically linked in a tree like structure
and are optionally connected by cross—tree constraints. An example on how
feature models are depicted is shown in Figure 2, where the feature model
describes a Home Integration System(HIS) product line.
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Figure 2. Home Integration System (HIS) feature model diagram

Although there are many proposals on the type of relationships and their
graphical representation in feature models (see the work by Schobbens et al.
(2007) for a detailed survey), the most usual relationships are the following:

Mandatory A child feature is mandatory when it is required to appear when-
ever its parent feature appears. In the example, R10 is a mandatory rela-
tionship between control (the parent feature) and temperature (the child
feature), i.e. whenever a temperature control is present in a product, there
must be a control system in that product.

Optional A child feature is said to be optional when it can appear or not
whenever its parent feature appears. In the example, R9 is an optional rela-
tionship between control and appliances control, i.e. the appliances con-
trol feature can be optionally chosen whenever there is a control system in
a product.

Or-relationship A set of child features have an or—relationship with their
parent feature when one or more child features can be selected when the
parent feature appears. Relationship R11 in Figure 2 is an or relationship
where whenever services is selected, video on demand or internet connec-
tion or both must be selected.



Alternative A set of child features are said to be alternative when only one
of them must be selected when their parent feature appears. Relationship
R12 is an alternative relation in Figure 2, where adsl, plc or wifi internet
connections must be selected but only one of them in a single product.

Requires, Excludes A cross—tree relationship like A requires B means that
in any product where feature A appears, feature B must also appear. On
the other hand, a relationship like A excludes B means that both features
cannot appear in the same product at the same time. In the sample feature
model, plc cannot appear in a product if light control appears and vice
versa.

2.2 Theory of Diagnosis

The well-known theory of diagnosis proposed by Reiter (1987) has been widely
used to diagnose systems—especially electronic circuits—, i.e. to determine
which system components, if any, make the system behave abnormally.

In Reiter’s theory of diagnosis, a system is modeled as a pair (SD, COMPS)
where COMPS is the set of system components and the system description
(SD) is a set of predicates defining the behavioral and structural models of the
system. In the behavioral model, the normal behavior of system components
is described as logical implications of the negation of their abnormal behavior,
denoted as Ab(c¢) where ¢ is a system component. Obviously, the negation of
an abnormal behavior is considered as a normal behavior.

As an example inspired by the one developed by de Kleer et al. (1990), let us
consider the two—inverter circuit in Figure 3. An inverter is an digital electronic
component that inverts its input, i.e. it outputs 1 when its input is 0 and vice
versa. As the reader can imagine, the normal behavior of the circuit in Figure
3 is outputting its input since is a double inversion, i.e. in(f;) = out(L).

Following Reiter’s theory of diagnosis, the system components can be modeled
as COMPS = { I, I, }, representing the two inverters. Assuming an inversion
function inv : {0,1} — {0,1} such that inv(0) = 1 and inv(l) = 0, the
behavioral and structural models, i.e. the system description SD, would be
the following:

t(l
inty| T3 out)
I I
in(l, in(l,) o] 1|0
Out(ll) OUt(lz) 1 0 1

Figure 3. The two inverters circuit and its normal behavior



SD = {=Ab(L,) = out(L,) = inv(in(L)), [behavioral model]
—Ab(L) = out(ly) = inv(in(Ly)), [behavioral model]
out(I) = in(l) } [structural model]

In Reiter’s theory of diagnosis, in order to diagnose a system a set of ob-
servations OBS, expressed as predicates, is needed. For example, a set of
observations for the two—inverter circuit —denoting an abnormal behavior—
could be { in(f) = 0, out(ly) =1 }. In this context, a Reiter’s diagnosis of
(SD, COMPS, OBS) is defined as a minimal set of components with abnor-
mal behavior, denoted as A. In other words, A C COMPS is a diagnosis of
(SD, COMPS, OBS) if the following set of predicates is consistent and A is
minimal:

SD U OBS U { Ab(c)|c€ A} U { =A4b(c) | c € COMPS — A} (1)

If the system behaves normally, then A = @ and the following set of predicates
is consistent:

SD U OBS U { —Ab(c) | c € COMPS } (2)

Following with the two—inverters example and the former example observation,
to check if the system behaves normally, i.e. if A = @, the following set of
predicates must be verified to be consistent:

{ =Ab(L) = out(L,) = inv(in(Ly)), S
—Ab(L) = out(ly) = inv(in(l)), S
out(l,) = in(L), [

behavioral model)]
behavioral model)]
structural model)]

m/\/‘\/-\

in(f) =0, out(l) =1, [
—Ab(L),~Ab(L) } [-Ab(c) | c € COMPS]

In this case, the previous set is not consistent. That means that there are
components in A that makes the system behave abnormally. A naive algorithm
to identify the components with abnormal behavior is to check all elements in
the power set of components P COMPS against formula (1) and select those
which are minimal. In the example, P COMP = { @,{L},{L},{hL, L} } and
two diagnoses, A; = {I;} and Ay = {I} make formula (1) consistent and are
minimal. That means that only one of the inverters fails, but not the two of
them simultaneously.

There are many different techniques to diagnose a system based on Reiter’s
theory of diagnosis. In Section 5 we show how to use constraint satisfaction
problem solvers to diagnose feature models, applying the concepts described
in this section.



2.8  Constraint Satisfaction Optimization Problems

A Constraint Satisfaction Problem (CSP) is a declarative paradigm to model
and solve problems using constraints (Tsang, 1995). A CSP is defined as a
3 tuple (V,D,C) where V is a set of variables, each ranging on a finite
domain from set D, and C is a set of constraints restricting the values that
the variables can take simultaneously. A solution to a CSP is an assignment to
each variable of a value from its corresponding domain so that all constraints
are satisfied simultaneously. In the common usage of CSPs, we may search
for: i) just one solution, with no preference, ii) all solutions, i) an optimal
solution by means of an objective function defined in terms of one or more
variables of the problem.

Consider for instance, the CSP: ({a,b},{ {0,1,2}, {0,1,2} },{a + b < 4})
where both variables a and b take value in the domain {0, 1,2} and are con-
strained by {a + b < 4}. The only value assignment that does not satisfy
a+b<4is {a— 2,b+ 2}, so there are eight solutions. Nevertheless, if we
replace the constraint with a + b < 0 then the CSP is not satisfiable, i.e. there
is no possible value assignment satisfying the constraints.

In many real-life applications, we do not want to find any solution to a
CSP but a good one. The quality of a solution is usually measured by an
application dependent function called objective function. In these cases, the
goal is finding a solution that satisfies all the constraints and minimize or
maximize the objective function. Such problems are referred to as Constraint
Satisfaction Optimization Problems, that consist of a CSP (V, D, C) and an
optimization function O that maps every solution to a numerical value.

In the previous example, suppose that we define a constraint satisfaction op-
timization problem where the optimization function is O(s) = a, which max-
imizes the value of a. There are two solutions in the original CSP, { {a —
2,b— 0}, {a+— 2,b+— 1} }, that maximizes the value of the objective func-
tion and are therefore the solutions of the constraint satisfaction optimization
problem.

There is an important amount of research on algorithms and heuristics to solve
constraint satisfaction (optimization) problems, and the set of operational
alternatives is growing, including both commercial and free solvers.



3 Feature Model Level: Dealing with Errors in Feature Models

A feature model is composed by features and relationships among them. A
feature model describes the products in a SPL, considering products as sets of
selected features. Relationships are added to reduce the set of products until
the SPL is properly described.

Sometimes, introducing new relationships in a feature model may accidentally
remove some products so the feature model does not describe the real SPL. On
the other hand, the feature model may not be correctly constrained so some
products that are not in the SPL are still kept in the feature model. Therefore,
feature modeling is an error prone task where representing the correct SPL
in terms of features and relationships is not as easy as it seems.

We consider that an error is an incorrect definition of relationships that sug-
gests that the set of products described by a feature model may not match the
SPL it describes. Although this definition could cover many kinds of errors, in
this article we focus on three kinds that have already been considered in the
bibliography:

Dead features A dead feature is a non—instantiable feature, i.e. a feature
that despite of being defined in a feature model, it appears in no product in
the software product line. Common cases where dead features are generated
are shown in Figure 4.

Full-mandatory features A child feature in a non-mandatory relationship
is a full-mandatory feature if it has to be instantiated whenever its par-
ent, feature is, i.e. it is neither an optional nor an alternative feature. The
most common cases are shown in Figure 5. Full-mandatory features usually
appear together with dead features, as can be observed for some cases in
Figures 4 and 5.

Void feature models A feature model is void if it defines no product at all.

ATATE T

(d) (e) ® (@) (h)

Figure 4. Common cases of dead features

Figure 5. Common cases of full-mandatory features
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This error is commonly caused by contradictory relationships among manda-
tory features. Void feature models are also known as inconsistent, invalid or
unsatisfiable feature models (Batory et al., 2006) although this expression
is closely related to the method used to detect them in the literature. As
a void feature model defines no product, no feature is instantiable. That
means that every feature is dead including the root. So we can conclude
that a void feature model is the one whose root is a dead feature.

Some authors (see Section 7) have detected that the main complexity of pro-
ducing error—free feature models relies on modifying the right relationships
to remove the errors. If no explanation of the source of errors is provided,
the production of error—free feature models relies on the skills of the feature
modeler. Our objective is assisting the feature modeler in making decisions
to produce error free feature models. We propose the following two steps to
provide the feature modeler not only the list of errors within a feature model
but also the explanations for the relationships that cause the errors, as shown
in Figure 6:

(1) Detection: This step focuses on detecting the features that are affected
by the errors from a given feature model that is received as an input.
This step searches for dead and full-mandatory features (a void feature
model is a particular case of dead feature) and outputs a list of them.

(2) Explanation: For each feature in the list provided by the previous step,
all the explanations that are the origin of the errors are provided. An
explanation consists of one or more relationships that must be modified
to remove an error. For each error, many explanations can be given.
Using case (d) in Figure 4 as an example, the excludes relationship is
an explanation for the dead feature because it can be removed to solve
the error. The mandatory relationship can also be transformed into an
optional relationship to solve the error, so this relationship is another
explanation for the dead feature.

Following this process, the feature modeler can use the explanations provided
to correct the errors and producing an error free feature model. This article
describes an automated support for the detection and explanation of errors in
feature models as a contribution toward agile feature modeling.
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4 Diagnosis Level: Diagnosing and Explaining Errors

The goal of the diagnosis level, as depicted in Figure 1, is transforming a
feature model into a diagnosis model in order to detect errors and provide
their corresponding explanations. This transformation can be described using
a circuit like representation of feature models, where each relationship cor-
responds to a component. Every component or relationship has one binary
input per feature and one binary output (see Figure 7). Each input represents
the presence (1) or absence (0) of a feature whereas each output represents
whether a relationship is satisfied (1) or not (0). A product, represented by
its selected features, is an instance of the feature model if all relationships are
satisfied, i.e. if all outputs are equal to 1.

Figure 7 shows the circuit-like representation of the HIS feature model in
Figure 2. For example, the component representing the relationship R5 has
two inputs, supervision and fire, representing the corresponding features.
If both features are present or absent at the same time in a product, the
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Figure 7. Circuit like representation of the HIS feature model
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R5 component outputs 1; otherwise it outputs 0, which corresponds to the
semantics of mandatory relationships (see Section 2.1).

4.1 Transforming a Feature Model into a Diagnosis Model

As described in section 2.2, COMPS, SD and OBS sets must be defined to
represent a feature model as a diagnosis model. In our circuit-like representa-
tion of feature models, the relationships are considered as the components of
the circuit to be diagnosed. In other words, COMPS = { Ry, ..., R, } where
R; represents the Ri relationship in the feature model.

To define the SD set, some notation must be previously adopted. All R; compo-
nents, except those representing a root relationship, have one parent input and
one or more child inputs (see legend in Figure 7). The expression parent(R;)
denotes the parent input of the R; component and child(R;) denotes its child
input. Whenever a component has a variable number of children (or and alter-
native relationships), the expression child;(R;) denotes the j™ child input of
component R;, with 1 < j < m. For all type of components, out(R;) denotes
their output.

Once the notation is defined, the behavioral model of the diagnosis system
can be specified as shown in Figure 8. For the sake of simplicity, all definitions
have the form —Ab(R;) = ( out(R;) = 1 < ( behaviour;(R;) ) ), where
behaviour;(R;) is a predicate relating the inputs of the R; component that must

Type of R; | Behavior

Root —Ab(R;) = (out(R;) =1< (child(R;))=1))
Mandatory | =Ab(R;) = (out(R;) =1 < (child(R;) =1 < parent(R;) =1))
Optional | =Ab(R;) = (out(R;) =1 < ( child(R;) =1 = parent(R;) =1))
Alternative | =Ab(R;) = (out(R;) =1 < (
(parent(R;) =1 A 377%, childj(R;) =1) V
( parent(R;) =0 A >°7%, childj(R;) =0) ) )

Or S AB(R) = (out(Rs) =1 (

(parent(Ri) =1 A X, childi(R;) > 1) V

( parent(R;) =0 A 3252, childj(R;) =0) ) )

Requires | ~Ab(R:) = (out(Ri) = 1 < ( parent(Ri) = 1 = child(R;) = 1) )

Excludes | =Ab(R;) = (out(R;) =1 < ( parent(R;) =1 = child(R;) =0))

Figure 8. Mapping a feature model onto a diagnosis behavioral model
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hold when its output is 1. There is no need to include component behaviour
when their output is 0 in SD because, since all possible input and output
values are { 0,1 }, it can be deduced that —Ab(R;) = ( out(R;) = 0 &
( mbehaviour,(R;) ) ).

To complete the definition of SD, the structural model that describes how
feature signals and component inputs bind must be defined. As an example,

the structural model corresponding to the circuit in Figure 7 is shown in Figure
9.

child(Ry) = HIS  [structural model]
parent(Ry) = HIS

child(Ry) = supervision
parent(Rs) = supervision

child(Rg) = fire

—Ab(Ry) = ( out(Ry)
ﬂAb(Rg) = ( Out(Rg)
—\Ab(Rg) = ( Out(Rg)

1< (child(R1)=1)) [behavioral model]
1 < ( parent(R2) =1 < child(R2) =1) )
< ( parent(R3) =1 < child(R3) =1 ) )

1

Figure 9. Diagnosis system description corresponding to Figure 7

4.2  Diagnosing a Feature Model

The third element in a diagnosis model is the set of observations. Diagnosing
a system relies on consistency checking, i.e. detecting contradictions between
the system description and a given set of observations assuming that all com-
ponents are behaving normally. In the case of diagnosing feature models, we
assume that all relationships are satisfied, i.e. V;_, out(R;) = 1, and forcing
one or more features to be present or absent, as described in the following
sections.

4.2.1 Diagnosing Dead Features
A dead feature is a feature that does not appear in any product. In other words,

if VI'_, out(R;) = 1, that feature cannot be present in any input. By translating
this concept into a diagnosis model, we can affirm that if the following set of
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predicates is not consistent, then f;..4 is a dead feature:

SD U { V?:l OUt(RZ’) = 1, fdead =1 } U { ﬁAb(Rz) | RZ S COMPS }

Applying the theory of diagnosis we may determine all possible diagnoses
{Ay, -+, A} that make fi,q be a dead feature. Each A; is a subset of com-
ponents, i.e. relationships in the feature model, that makes the following set
of predicates consistent:

SD U { V?Zl ()Ut(RZ’) == 1, fdead =1 }
U{ Ab(R;) | Ri € A; }

In the HIS sample feature model, the plc feature is a dead feature because
the observation OBS = {V!_, out(R;) = 1, plc = 1} is not consistent with
the system description assuming all components are behaving normally. The
reason is that the plc feature is incompatible with the 1ight control feature,
which is a mandatory one. This situation is reflected in the set of diagnoses
for that observation, A; = {R3}, Ay = {Rs} and A3z = {Ry3}, which indicates
that relationships R3, R8 and R13 are responsible of making plc a dead feature.
If R3 or R8 were turned into optional relationships or R13 were turned into a
requires relationship or removed, plc would become a live feature.

4.2.2  Diagnosing Full-Mandatory Features

A full-mandatory feature is a feature that must be present in a product when-
ever its parent feature is, despite of being a child feature in a non—mandatory
relationship, i.e. optional, or-relationship or alternative. Following a similar
rationale than for diagnosing dead features, it means that if R; is a non—
mandatory relationship, there cannot be any product in which parent(R;) = 1
and child;(R;) = 0, being child;(R;) the child input of R; bound to the feature
to be checked as full-mandatory. In diagnosis terms, if the following set of
predicates is not consistent:

SD U {V;_, out(R;) =1, parent(R;) =1, child;(R;) =0 }

then the feature bound to child;(R;) is a full mandatory feature. The expla-
nations for this kind of error follow the same reasoning as for dead features,
i.e. determining the A; diagnoses.
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4.2.3  Diagnosing Void Feature Models

A feature model is void if there not exist any product satisfying all its relation-
ships, i.e. if it does not describe any product at all. This situation happens
when the root feature is itself a dead feature, so it can be diagnosed fol-
lowing the dead features diagnosis rationale, i.e. if OBS = {V._, out(R;) =
1, child(R,.0:) = 1} makes the system not consistent, the corresponding model
is a void feature model.

For the rest of the article, void feature models will be considered as a particular
case of dead features and no special treatment will be described.

5 Implementation Level: Modeling Diagnosis Problem as a CSP

One of the main advantages of defining error detection and explanation in
terms of theory of diagnosis is having the problem described in an implemen-
tation-independent way. In this work, we propose an implementation based on
constraint programming, however any other implementation could be proposed
relying on the previous diagnosis level.

Our proposal is inspired by two main sources: on the one hand, Benavides
et al. (2005) proposed a direct mapping from a feature model onto a CSP
to extract information about them; on the other hand, Fattah and Dechter
(1995) proposed a general transformation from diagnosis problems into CSPs.

5.1  Transforming a Diagnosis Model into a CSP

The first step to describe a CSP is determining the set of variables (V') and
their domains (D). In our case, we distinguish two kinds of variables defined
over domain {0, 1}: feature variables, Vp = {Fy,---, Fy}, corresponding to
the features variables in the structural model of the diagnosis system; and ab-
normality variables, Va, = {Aby,---, Ab,}, corresponding to the abnormality
indicators in the behavioral model of the diagnosis system.

Notice that there are no variables corresponding to the outputs of the compo-
nents representing the relationships in the feature models. Since out(R;) = 1
is a condition present in all the observations required for diagnosing a feature
model, it can be assumed that it always holds and therefore simplify the be-
havioral model definitions from —Ab(R;) = (out(R;) = 1 < behaviour(R;) )
into = Ab(R;) = behaviour(R;) and their corresponding constraints in a simi-
lar manner (see Figure 10).
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range Bool 0..1;

child(R,) = |HIS __ —» var Bool HIS,supervision,...;
parent(R2) =|HIS - - _w var Bool Aby,..., Abyj;
child(Rs) = |supervision|— _ -
parent(fz) =| Supervision ~
child(Rs) = |fire - -
— — — — solve
—Ab( Ry ) ;:( out(Ry) =1« ( child(R1)=1)) Ab=0 => HIS=1;
—AB(Ra) |5 ( out(Rs) =1 < ( parent(Rs) =1 child(Ry) =1) )—>» Aby=0 => (HIS=1 <=> supervision=1);
—Ab(Ra) = ( out(Ba) =1 < ( parent(Ra) = 1 < child(R3) =1)) Abs=0 => (HIS=1 <=> control=1);

Figure 10. Transforming diagnosis model in Figure 9 into a CSP

The second step is defining the constraints of the CSP. For that purpose, a
straightforward transformation from the structural and behavioral model of
the diagnosis system into a set of constraints is performed, as depicted in
Figure 10 using Optimization Programming Language (OPL), a widely used
language to represent constraint programming problems (Hentenryck, 1999).

Notice that predicates of the form =Ab(R;) are translated into a condition on
the corresponding abnormality variable of the form Ab;, = 0 and that parent
and child expressions are substituted by the corresponding feature variable in
the structural model of the diagnosis system.

As previously mentioned in Section 2.3, a solution to a CSP is an assignment
of domain values to the variables that makes all the constraints hold. Taking
into account that a valid product must satisfy all the relationships in a feature
model, the derived CSP can be used to determine the set of valid products
defined by a feature model if the values of abnormality variables are all set
to zero in the constraints set, i.e. {Ab; = 0| Ab; € Vy,}. All the solutions to
the resulting CSP would be assignments to the feature variables Fj, i.e. valid
product configurations in which the assignment F; — 1 means Fj is present
in a product configuration whereas F; — 0 means that F; is absent.

5.2 Diagnosing a Feature Model

The key element for diagnosing a system is the set of observations. As pre-
viously described in Section 4.2, in order to diagnose a feature model, all
relationships are assumed to be satisfied, V;_, out(R;) = 1, and one or more
features are forced to be present or absent depending on the kind of error to
be diagnosed.

When the diagnosis system is transformed into a CSP, observations become
conditions of the form F; = 0 or F; = 1 that are added to the set of con-
straints, and consistency checking becomes satisfiability checking. In the next
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sections the additional constraints derived for each kind of error based on the
observations proposed in Section 4.2 are described.

5.2.1 Detecting Dead Features

As described in Section 4.2.1, in order to diagnose if a feature fz..q is a dead
feature in a feature model, the following set of predicates must be checked for
consistency:

SD U {V?Zl out(Ri) = 1, fdead =1 } U { ﬁAb(RZ) | Rz e COMPS }

Transforming this into a CSP implies that the following conditions must be
added to the set of constraints of the CSP derived from the diagnosis model:
{Ab; =0 | Abj € Vap} U {Faeaa = 1}. The consistency checking is then re-
placed by a satisfiability checking, i.e. if the augmented CSP is not satisfiable,
faeaa 18 a dead feature.

5.2.2  Detecting Full-mandatory Features

In the case of full-mandatory features, the transformation of the diagnosis
system into a CSP implies that the following set of conditions must be added
to the set of constraints of the derived CSP: {Ab; = 0| Abj € Vap} U {Fpn =
0} U {F, = 0}, where Fj, is the full-mandatory feature and F), it is its
parent feature. If the augmented CSP is not satisfiable, F'p, is a full-mandatory
feature.

5.8  Explaining errors

Once the errors have been detected, their causes must be determined, i.e. which
are the relationships generating the errors. In the diagnosis level, a diagnosis
is a minimal set of relationships that behave abnormally and that explains the
errors in the feature model. Transforming this into a CSP, a diagnosis A is a
minimal set of abnormality variables A C Vy, such that {Ab, — 1| Aby € A}
is in the set of solutions of the CSP. In other words, not all the solutions are
interesting but only those minimizing the number of failing relationships, i.e.
the number of abnormality variables taking value 1. As described in Section
2.3, the CSP for determining A sets is a CSOP in which the objective function,
>ty Abg, must be minimized.

The set of constraints of a CSP for determining the cause of an error is the same
than for detecting the error except that abnormality variables are unbound.
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For the sample feature model in Figure 2, after detecting that plc is a dead
feature, the CSOP for providing explanations would be the following:

(VF U VA},, D7 cu {plC = 1}, min Z Abk)
k=1

From all its solutions, and after discarding feature variables and abnormality
variables taking value 0  they are not relevant for this purpose , three A
set are found: {Abg — 1}, {Abg — 1} and {Aby3 — 1}. Since each abnormal-
ity variable is associated with a relationship in the feature model, the three
explanations of why plc is a dead feature are A; = {R3}, Ay = {R8} and
Az = {R13}.

6 Applying our Proposal to a Real Case

We have applied the implementation level described in this paper during a
software product line development project. The project intends to build a set
of Enterprise Resource Planning (ERP) products in the context of SAUCE, an
environmental resources management SPL. SAUCE comprises a set of prod-
ucts to store and exploit the existing information about flora and fauna in
different rivers. The aim of the SPL is to produce customized software that
helps to the management and conservation of these fluvial ecosystems.

As a first result of domain engineering activities, a large scale feature model
was obtained. We followed an approach inspired by the FDD methodology
to develop and refine the ERP feature model in two—week iterations. In each
iteration the feature model was reviewed according to changes suggested by
domain and application engineers using our FAMA tool described by Bena-
vides et al. (2007). FAMA is an Eclipse plugin for feature model edition and
analysis. It has a multisolver analysis engine that performs operations such
as products counting, products filtering and commonality analysis by means
of different CSP, BDD or SAT solvers. FAMA has been extended to support
the error analysis implementation described in this article. This way, FAMA
assists the production of error free feature models by detecting and explaining
the emerging errors. Some captures of the process are shown in Figure 11. The
empirical results obtained from FAMA in each iteration are presented in Fig-
ure 12. Each row corresponds to an iteration. Five iterations were performed
over the feature model and their data collected. The columns are labeled as
follows:

e /F: number of features of the feature model.
e #R: number of relationships without considering cross tree relationships,
i.e. requires and ezxcludes relationships.
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Figure 11. FAMA tool has supported the error detection and explanation in SAUCE
development

o #CTR: number of cross—tree relationships.

e #FC: number of added plus removed features respecting to the previous
iteration.

e #RC: number of changes affecting the existing relationships plus number
of added and removed relationships respecting to the previous iteration.

e #CTRC: number of added plus removed cross—tree relationships respecting
to the previous iteration.
#P: approximate number of products represented by the feature model.
#DF: number of dead features detected by our tool and corrected by the
user.

o VEFM: if the resulting feature model included an error to make it to be void.
#FMF: total number of full-mandatory features detected by our tool and
corrected by the user.

In each iteration, as a consequence of the changes in the SPL requirements
and therefore in the feature model, new errors arose even when the previous
feature model was error—free.

As a result of our experience, a high number of cross—tree relationships often
hinder the engineers to keep a record of the arising errors. Our tool has sup-
ported the evolution of the ERP feature model easing and guaranteeing the
production of an error—free feature model. Supporting a quicker evolution of
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It || #F | #R | #CTR || #FC | #RC | #CTRC #P #DF | VFM | #FMF
1| 61 | 56 54 - - - 3,59 - 101 1 No 2
2| 76 | 70 86 15 14 32 2,96 - 1013 1 No 8
3179 | 73 88 3 3 2 1,17 10 0 No 0
4 | 84 | 78 102 5 9 14 5,18 - 10 2 No 4
51| 8 | 80 104 2 2 3 1,46 -10'6 0 No 6

Figure 12. Evolution of the feature model of an ERP SPL
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Figure 13. ERP feature model

feature models reduces the time invested on this task, allowing the engineers
to concentrate in others. The feature model resulting from this process is de-
picted in Figure 13. Notice that for the sake of simplicity we have omitted
part of the features on the feature model and all the cross-tree relationships.

7 Related Work

Although the automated error analysis in feature models was already identi-
fied as a fundamental task in the original FODA report by Kang et al. (1990),
few authors have dealt with it. As a matter of fact, there has not been a sem-
inal approach to automatically analyze errors in feature models as far as we
know.

Our interest in automating error detection and explanation arose from the
work of von der Massen and Lichter (2004), where the authors proposed a
categorization of what they call deficiencies (referred to as errors in this ar-
ticle) in three levels of severity: redundancy, anomaly and inconsistency. Re-
dundancies appear when relationships among features are modeled in multiple
ways so they can be removed and the set of products represented by a feature
model remains the same. In some cases, redundancies can be intentionally in-
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troduced to emphasize a relationship. We have not dealt with them in this
article because they do not fit in our concept of error. Anomalies appear when
some products are lost due to a mismodelling but the feature model still de-
fines some products. Anomalies generate dead and full-mandatory features.
Finally, inconsistencies appear when the feature model contains contradictory
relationships removing a set of products (dead features) or making it impos-
sible to derive products (void feature models). Unfortunately, von der Massen
and Lichter’s proposal lacks rigorous definitions and no automated analysis is
suggested.

Regarding the works dealing with automated error analysis, we distinguish
between those that only deal with error detection and those also coping with
errors explanation. In the first group we mention the work of Mannion (2002);
Zhang et al. (2004); Czarnecki and Kim (2005).

Mannion uses first—order logic to determine if a feature model is void or not,
but no other kind of error is detected. Zhang et al. suggest the use of an
automated tool support based on the SVM System (McMillan, 1992) to detect
void feature models and dead features. Finally, Czarnecki and Kim propose
the detection of void feature models and dead features as a marginal result of
applying binary decision diagrams to represent feature models.

In the second group where errors explanation is dealt with, Batory (2005);
Sun et al. (2005); Wang et al. (2005) work on automated error explanation

which are the conflicting relationships.

Batory translates feature models into propositional formulas and uses SAT
solvers (solvers for propositional calculus) and Logic Truth Maintenance Sys-
tems (LTMS) algorithms. Sun et al. translates feature models into Alloy, a
simple structural modeling language based on first—order logic (Jackson, 2002).
Alloy uses a SAT solver to analyze the relationships that generate a void fea-
ture model. Finally, Wang et al. propose the translation of feature models into
an OWL DL ontology. OWL DL is a expressive yet decidable sublanguage of
OWL (Ontology Web Language). It is possible to use automated tools such as
RACER, proposed by Haarslev and Moller (2001) and used in this case to the
automatically analyze feature models. A summary of the reviewed proposals
is presented in Figure 14.

Although not all the previous proposals allow the analysis of dead and full
mandatory features, this is not their main drawback because it is certainly
possible to extend them. In our opinion, the main disadvantage of these pro-
posals is that they lack abstraction. It is in the sense that they are useful when
feature models are analyzed using the corresponding formalisms and tools but
they are not extrapolatable to other ways of analyzing errors in feature mod-
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Figure 14. Summary of proposals for the automated error analysis of feature models

els. By contrast, in this paper, we have presented a more abstract proposal,
because we use theory of diagnosis principles, a well-established research field
with strong theoretical foundations, as a more abstract level of specifying the
analysis of errors in feature models.

Due to its level of abstraction, our proposal allows extensions in both diagnosis
and implementation levels. Other errors can be added in the diagnosis level
and implemented in the implementation level that can also be defined using

other tools such as Binary Decision Diagrams (BDD) or SAT solvers instead
of CSP solvers.

New kinds of error can appear when dealing with extended feature models
(Benavides et al. (2005); Batory (2005); Batory et al. (2006)) where feature
attributes are included in the model. Relationships among attributes can also
constrain the model, producing dead features for example. Benavides et al.
(2005) proposed a direct mapping from a feature model onto CSP that rep-
resents attributes. As we have proposed a general schema that supports new
errors just by defining the observation that detects them in the diagnosis level,
and an implementation to deal with attributes already exists, we think that
we can extend our proposal to support errors analysis in extended feature
models. This is an important limitation of the other proposals.
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8 Conclusions and Future work

We have discussed our vision on how SPL and agile methods can come to-
gether, either by applying agile principles to SPL. methodologies or by tailor-
ing an existing agile methodology to support SPL development. Independently
from the chosen alternative, supporting automatic error detection and expla-
nation is an important contribution that can be a first step in bringing agile
principles and SPL together. As feature modeling is an error-prone task, an
activity that checks the feature model is needed. Large scale feature models
may contain hundreds of features and represent thousands of products as it
can be seen in our example case. In these cases, an automated support for
error analysis is needed as doing it by hand is not feasible. Our proposal sup-
ports an automated feature model error analysis that is therefore, a first step
in our roadmap to integrating agile and SPL techniques.

Our proposal relies on theory of diagnosis to represent the problem of error
detection and explanation in general terms. The advantage of using this ab-
stract representation is twofold: many different implementations can be used
in the implementation layer and the diagnosis level can be extended with new
kinds of error just by defining the observations that detected them.

By relying on the extensibility of our proposal we have detected some future
extensions to our proposal. In programming languages, errors correction is
a mature topic. Explanations give the user sufficient information to correct
errors. We will study how to use explanations to assist the user with the
correction of errors.

As several implementations can be used to refine the diagnosis level, it is
important to compare how each implementation performs to choose the best
of them. Our future work will compare the performance of several SAT, CSP
and BDD solvers.

We have only focused on errors analysis in basic feature models, but they can
be extended with attributes where new kinds of error can appear. Our future
work will extend our proposal to deal with extended feature models.

Regarding the integration of SPL and agile methods integration we would like
to thoroughly study both alternatives. Specifically, we plan to tailor all the
stages in FDD to fully support SPL based on feature models.

Although we have presented the most used notation of feature models, it is
important to notice that there are other notations with different semantics as
described by Schobbens et al. (2007). An unified language for feature modeling
is needed and if this language is adopted our idea will remain valid but we may
have to change the mapping from this new language to theory of diagnosis.
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