
Extending Complex Event Processing to
Graph-structured Information

Gala Barquero
Universidad de Málaga, Spain

gala@lcc.uma.es

Loli Burgueño
Universidad de Málaga, Spain

UOC, Barcelona, Spain
CEA-List, Paris, France

loli@lcc.uma.es

Javier Troya
Universidad de Sevilla, Spain

jtroya@us.es

Antonio Vallecillo
Universidad de Málaga, Spain

av@lcc.uma.es

ABSTRACT
Complex Event Processing (CEP) is a powerful technology in real-
time distributed environments for analyzing fast and distributed
streams of data, and deriving conclusions from them. CEP permits
defining complex events based on the events produced by the incom-
ing sources in order to identify complex meaningful circumstances
and to respond to them as quickly as possible. However, in many sit-
uations the information that needs to be analyzed is not structured
as a mere sequence of events, but as graphs of interconnected data
that evolve over time. This paper proposes an extension of CEP sys-
tems that permits dealing with graph-structured information. Two
case studies are used to validate the proposal and to compare its
performance with traditional CEP systems. We discuss the benefits
and limitations of the CEP extensions presented.

CCS CONCEPTS
• Software and its engineering → Model-driven software engi-
neering; Software performance; • Computer systems organiza-
tion→ Real-time systems; • Information systems→ Query lan-
guages; Graph-based database models;
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1 INTRODUCTION
Stream processing systems are becoming widespread due to the
steadily growing number of information sources that continuously
produce and offer data. Among them, Complex Event Processing
(CEP) is currently a mature technology for analyzing and correlat-
ing streams of information about real-time events that happen in a
system, and deriving conclusions from them [6, 14, 23, 24]. A dis-
tinguishing feature of CEP, not present in many stream processing
systems, is that it permits defining complex events or patterns on
top of the primitive events in order to identify elaborate meaningful
circumstances and to respond to them as quickly as possible. Such
event types and event patterns are defined using Event Processing
Languages (EPLs).

In many applications, however, the information that needs to be
analyzed is not structured as a mere sequence of partially ordered
timed events, but as graphs of highly interconnected datasets that
evolve over time—e.g., contagious disease spreading data or social
media networks. In these systems, not only the type of event and
the moment in time at which it occurs are relevant, but also its con-
nections with other surrounding objects, the state of these objects,
and the current network topology.

This paper proposes an extension of CEP systems that permits
dealing with graph-structured information, in addition to their
timed-events stream processing capabilities, and its implementation
using graph technologies based on cluster computing platforms.
Two case studies are used to illustrate the proposal, and to discuss
the benefits and limitations of this kind of extension of CEP systems.

Our solution makes use of the fact that the structure of a CEP
event stream can be generalized from a sequence of time-ordered
elements to a model (i.e., a graph of interrelated elements). Be-
sides, the behavior of a CEP system can be naturally considered
as a special case of in-place model transformation (MT) [11, 12],
and therefore most of the MT machinery can be reused. To tackle
the stringent requirements of CEP systems regarding their scala-
bility and performance, we propose the use of the recent graph-
parallel computation technologies (such as the GraphX component
of Spark [18]), which provide the required supporting storage and
access infrastructure.

One of our major contributions is the generalization of the con-
cept of CEP windows to the more general concept of graph vicinity.
CEP makes use of windows in order to restrict the matching space
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to the substream of events with a certain time or length window,
i.e., with timestamps inside a temporal window, or limited to a con-
secutive number of events, respectively. Our approach also permits
restricting the pattern matching to a subset of the whole space. In
addition to the temporal or length windows from the original CEP,
we introduce the concept of spatial windows, which are defined
in terms of vicinity graphs [13], composed of elements related to
those in the rules by means of the graph arcs, and which constitute
their local context. It is important to note that, in our proposal, time
becomes just one of the possible dimensions through which we can
navigate the graph.

The structure of the paper is as follows. First, Section 2 briefly
introduces CEP systems and their main features, as well as Apache
Spark and graph-parallel computation technologies, the three un-
derlying technologies over which our approach is built. Then, Sec-
tion 3 describes our extension to CEP systems for dealingwith graph
structures, beyond sequences of timed events. Section 4 discusses
how we have implemented our proposal using cluster computing
platforms, and Section 5 describes the validation experiments we
have performed to assess our approach. Finally, Section 6 relates
our work to other similar approaches and Section 7 concludes and
outlines some future lines of work.

2 BACKGROUND
2.1 CEP in a nutshell
CEP [14, 23] is a form of Information Processing [6] whose goal
is the definition and detection of situations of interest, from the
analysis of low-level event notifications [7]. According to the Event
Processing Technical Society [15], we use the simple events term
to refer to the low-level primitive event occurrences, and complex
events to those that summarize, represent, or denote a set of other
events. Derived events are a particular kind of complex events,
which are generated as a consequence of applying a process or
method to one or more other events. In summary, CEP systems
analyze streams of simple events to detect occurrences of complex
events, that represent the high-level situations of interest to the
CEP modeler, using declarative rules that define the derived events
in terms of patterns of (simple or complex) events, their contents,
and temporal relations.

Although several CEP systems and languages exist, they all
share the same basic concepts, mechanisms and structure. These
are briefly introduced below.

• Events. In CEP, every event (simple or complex) has a type
and a set of attributes. Events are atomic, happen instan-
taneously, and they all have an attribute with information
about the moment in time at which they occur.

• Patterns. A CEP rule defines a derived event, by means of a
pattern that combines other events. Whenever the pattern
is detected in the stream (i.e., it is satisfied by the stream
events), the derived event is created. The simplest kind of
pattern (called selection pattern) permits creating derived
events every time a given simple event is detected in the
stream.

• Elements of patterns. There are several representative el-
ements of CEP patterns that are commonly used in rules.

– Windows: We can assign windows to patterns, restricting
their scope. Windows could refer to specific time intervals
(time windows) or to number of occurrences of particular
events (length windows). Moreover, we can distinguish
two types of windows: batch and sliding. The first ones
have fixed starting and ending points. The latter ones
move the interval so its ending point coincides with the
current position of the pointer traversing the stream (e.g.,
the current time).

– Temporal sequencing of events: A key CEP operator is
followedBy (“->”), which introduces a temporal ordering
between two events. Events related by this operator do
not need to be consecutive: “A -> B” only implies that
event A occurs some time before B, i.e., the timestamp of
A precedes that of B.

– Pattern combination: Patterns can be combined in dif-
ferent ways by using logical operators (or, and, etc.) and
temporal connectors (until, while, etc.), among others.
Negation is also possible, representing the fact that an
event has not happened. In addition, windows can be com-
bined, restricting their scope.

Such elements are indeed very close to those of in-place model
transformation rules, with two main additions. First, given that the
stream can be considered infinite, or at least too large to be handled
in full, CEP patterns use the concept of window to restrict their
scope. Therefore all matches are local, within the scope defined
by the window. Second, all events have a timestamp and therefore
they can be (totally) ordered; in other words, the stream can be
considered as a linear sequence of ordered events. Relationships
between the events are not explicitly modeled, they are normally
specified either by time-order information, or by name/id matching.

2.2 Apache Spark
Apache Spark is a general-purpose cluster computing platform that
extends the popular MapReduce model to efficiently support more
types of computations, including interactive queries and stream
processing [20]. One of the main features Spark offers for speed
is the ability to run computations in memory, while being more
efficient than, e.g., MapReduce for complex applications running
on disk.

Spark combines different processing types and it is designed
to be fast, highly accessible, and provide simple APIs in different
programming languages such as Python, Java, Scala, and SQL, and
a set of rich built-in libraries. It also integrates smoothly with other
Big Data tools.

Spark is built on the concept of distributed datasets, which con-
tain arbitrary Java, Python or Scala objects, upon which parallel
operations can be efficiently performed. The Spark API is built
around the concept of a resilient distributed dataset (RDD), which is
a fault-tolerant collection of elements that can be operated on in
parallel. The RDD API supports two types of operations: transfor-
mations, which define a new dataset based on previous ones, and
actions, which execute operations on a cluster. RDDs can be created
in two ways: parallelizing an existing collection, or referencing a
dataset in an external storage system (e.g. as a shared filesystem,
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HDFS, HBase, or any other data source offering a Hadoop Input-
Format).

Spark also provides different tools that are built as libraries on
top of Spark, such as Spark Streaming, which enables processing
of live streams of data; Spark SQL, for working with structured
data; MLib, containing common machine learning functionality,
and GraphX for manipulating graphs.

2.3 Graph processing systems
Graph structures are commonly used for representing the data of
models, and for performing patterns on them. Graphs are com-
posed of nodes, edges and properties for this representation. Nodes
represent objects in a domain of interest, and edges represent rela-
tionships between these objects. Both nodes and edges can be typed,
and may also have attributes, which are also typed. Relationships
can be directional or bidirectional, and they can also be derived.

Graph patterns are structures that should be matched against
the graph for performing queries. Graph patterns can use variables,
and be augmented with other (relational-like) features, such as
projections, unions, optionals, and differences.

Graph databases [29] can be very efficient for performing path
queries, and hence they have been effectively used for storing and
performing operations on very large models [9]. However, the strin-
gent requirements imposed by real-time event processing systems
requires in-memory storage of data and very fast processing frame-
works. In fact, as discussed later in Section 5, our first prototypical
implementation of our approach was developed using Neo4j and
Cypher. However, the performance penalty introduced by the use
of disk storage resulted in unacceptable response times when com-
pared with native CEP systems—which are at least one order of
magnitude faster.

This is where Graph Processing Systems, such as Pregel [25] or
PowerGraph [17] can be very efficient. In a nutshell, graph pro-
cessing systems define computation at the granularity of vertices
and their neighbors, and exploit the sparse topology of the graph.
These systems can naturally express and efficiently execute graph
algorithms such as PageRank [26] or community detection [22], on
graphs with billions of elements [18].

In contrast, general-purpose distributed dataflow frameworks
(such as Map-Reduce, Spark or Dryad) provide efficient dataflow
operators (e.g., map, reduce, group-by, join), and define computation
as dataflow operators at either the granularity of individual items
(e.g., filter, map) or across entire collections (i.e., operations like
non-broadcast join that require a shuffle). These frameworks are
very well suited for analyzing unstructured and tabular data.

A recent trend for efficient graph processing combines both
technologies. One exponent of this trend is GraphX [18], an ef-
ficient graph processing framework embedded within the Spark
distributed dataflow system. GraphX is built as a library on top of
Spark. It encodes graphs as horizontally-partitioned collections and
then expresses the GraphX API for graph computation in terms of
standard dataflow operators on these collections (e.g., join, map,
group-by). A series of internal optimizations are used to improve
the performance of the API operations, making it comparable to
(or even faster than) other specialized graph processing platforms.

3 EXTENDING CEP
3.1 A Running example
To motivate and illustrate our proposal, consider a system that
needs to take into account the information provided by Flickr1 and
Twitter2, and use it together to identify some situations of interest.
The metamodel for these two information systems is depicted in
Figure 1. Note the existence of only one common class, Hashtag.
The rest of the elements could be related, but there is no automated
manner to implement such a relation that is 100% reliable (for
example, automatically relating users based on their Twitter and
Flickr ids is impossible).

Given such a system, we are interested in identifying some situ-
ations of interest to its users, and react to them. Examples of these
situations are the following:

S1: A hashtag has been used by both Twitter and Flickr users at
least 100 times in the last hour. We would like to generate a new
HotTopic object in the graph that refers to this hashtag.

S2: The hashtag of a photo is mentioned in a tweet that receives
more than 30 likes in the last hour. A PopularTwitterPhoto ele-
ment is created.

S3: A photo is favored by more than 50 Flickr users who have
more than 50 followers. A PopularFlickrPhoto element is created.

S4: A user, with an h-index3 higher than 50, posts three tweets in
a row in the last hour containing a hashtag that describes a photo.
In this case, we generate a NiceTwitterPhoto object.

S5:AFlicker user favorites a photo identified as NiceTwitterPhoto
but none of her followers do. If so, we generate a Misunderstood
object identifying the user.

S6: Taking into account the 10, 000 most recent tweets, a user
with h-index higher than 70 and more than 50K followers who
writes a tweet raises an InfluencerTweeted event.

To record such new objects (that correspond to CEP derived
events), we have included in the metamodel 6 extra classes (shaded
in gray). Therefore, a model of this application will contain both
the information from the sources (Twitter and Flickr) and also the
information we generate during its lifetime, as the system evolves.

Note that in order to respond to these patterns, we need to take
into consideration not only the more static information about the
social network users, but also the dynamic and rapidly changing
information appearing such as tweets or likes. Some situations (S4
and S5) also imply traversing the model through its relationships,
including the closure of a relationship (e.g., Follow). This means
that the search space can be extremely high. Other situations (S5)
require negations, which also imply searches in a very large model.

3.2 Extending CEP elements and operators
3.2.1 Extending the structure. In order to extend the structure of

CEP, we make use of conceptual modeling concepts for represent-
ing information items and their relationships, i.e., our information
system will be represented by a model, and not just by a sequence
of events. Elements of such a model that represent CEP events will

1https://www.flickr.com/
2https://twitter.com/
3In Twitter, a user has an h-index of h is she has at least h followers who have more
than h followers each.
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Figure 1: Twitter and Flickr joint Metamodel.

have an attribute, timestamp, with information about the moment
in time at which the event occurs.

Apart from the relationships defined among the nodes, a derived
directed relation FollowedBy can be defined between the model
elements (i.e., graph nodes) with timestamps if the timestamp of
the first element is less than that of the second. In this way, a
CEP event stream is just a graph with one single dimension. In
addition, the lifecycle of events should be considered too, by means
of mechanisms that permit inserting the objects that represent the
events when they occur, and removing them when the become
outdated (not part of any CEP window).

3.2.2 Vicinity: extending CEP Windows. In CEP, windows could
refer to specific time intervals or to number of occurrences of
particular events. There are two types of CEP windows: batch and
sliding. The first ones have fixed starting and ending points. The
latter ones move the interval so its ending point coincides with
the current position of the pointer traversing the stream (e.g. the
current time). In other words, CEP windows define segments of the
linear stream of events that determine the local context of a match.

When the linear nature of the event stream is generalized to a
graph, instead of stream segments (time or length windows) we can
use vicinity graphs [13], which are subgraphs composed of elements
related to one or more objects. They represent the neighborhood of
these objects, and can be expressed by means of graph patterns.

In this way, we can talk about spatial vicinity, in addition to the
temporal vicinity used in CEP. Then, given one object, its vicinity
will be composed of other objects related to it by links (directly, or
through a sequence of consecutive links, that we shall call hops),
i.e., its nearby objects. To determine the window that establishes
the local context of a rule, we can simply define the vicinity of the
objects in the rule.

There are different strategies to define the vicinity graph of an
object, depending on how we navigate through the graph structure,
and the goal we pursue. Representative examples of algorithms

for creating relevant vicinity graphs of nearby objects are used for
finding related pages in the WWW [13, 21]. These algorithms use
different strategies, e.g., going through the parents and children of
a page, and then visiting the children and parents of those—using
a backward-forward and forward-backward strategy. We could
also traverse the graph moving only forward or backward (as in
the case of CEP sliding windows), or using any other traversal
strategy: in-breadth, in-depth, topological, hybrid, etc. Travesal
could be done through any kind of link, or we could navigate the
graph through some selected kinds of relations. The information
on the nodes could also be considered when building the vicinity
graph, assigning weights to nodes and to links, instead of just bean-
counting them.

Note that if we collapse a graph into the one-dimensional se-
quence that represents a CEP event stream, by focusing only on
the timestamp attribute of the objects that represent events, and
the followedBy derived relation, the concept of vicinity faithfully
corresponds to the CEP concept of window, time becoming just one
of the possible dimensions by which we can navigate the graph.

3.2.3 Extending the behavior. Given that now we have a model
(i.e., a graph), recursive in-place model transformation rules can
be naturally used to represent how derived information items (e.g.
complex events) are created and added to the system, hence being
able to extend the traditional CEP behavior. Thus, each CEP rule is
mapped to an in-place model transformation rule that specifies the
matching pattern and creates the derived event.

Non-timed derived events can also be generated by other MT
rules, permitting further situations of interest to be detected as the
graph evolves—i.e., new nodes or links are created or destroyed.

Finally, to simulate the lifecycle of CEP events, another model
transformation rules can be in charge or removing those model
elements that represent CEP events with ‘old’ timestamps—i.e., once
they are outside the temporal windows.
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4 IMPLEMENTATION
4.1 Architecture
In order to implement and validate our proposal, in the first place,
we have used Apache Spark to process the models. To create the
graph dataset, a Spark RDD is used for the vertices, and another
one for the edges, thus storing the simple events and the relations
among them in two RDDs. The graph dataset is populated using
the corresponding APIs from the different sources; in our example,
the Twitter and Flickr APIs. A thread is in charge of obtaining the
batches of raw data, giving them the proper format of RDD, and
storing them in the dataset.

CEP patterns are implemented in terms of Spark and GraphX
functions written in Scala—which perform the matching process of
the rule— followed by the generation of the new objects—, which
correspond to the derived elements. We use one dedicated thread
per rule that is continuously running, and each rule has a corre-
sponding RDD to store the derived events.

To represent the objects in the graph dataset, we need to distin-
guish between transient and permanent information. The former
refers to the time-sensitive information coming from sources with
high-volume of data that do not need to persist in memory for a
long time. Basically, this kind of information corresponds to tradi-
tional CEP data streams; once they are analyzed by the CEP rules,
they can be discarded. In our example, these can be the tweet feeds.
Permanent (or static) information corresponds to data which is
stable in time, and that we want to persist in the database for longer
periods. For instance, the information about the Twitter and Flickr
users, or the Flickr photos, in our example.

Both kinds of data are stored in the dataset, although the manner
in which their lifecycles are managed is different. Objects repre-
senting permanent information are stored as single nodes in the
graph dataset, and relationships among them as relationships in
the dataset, too. Transient data (i.e., events) need to be processed
as soon as possible by the CEP rules, and each rule should try to
be as efficient as possible. Then, we simulate a time window and
every object that represents a time-sensitive event has a timestamp
and it will be removed when its timestamp expires. The time win-
dow value will be set by the rule with the biggest time window, 60
minutes in our example.

When appropriate, our implementation can consider complex
events like transient data too, so they will have a timestamp at-
tribute and will be removed when they expire. However, if the same
complex event is detected in a time window several times, for effi-
ciency reasons its timestamp will be updated instead of duplicating
the event, or discarding the last detection.

4.2 Writing the patterns for the example
As mentioned above, CEP patterns can be implemented by means
of in-place model transformation rules, which in turn we express
in this version as Spark patterns.

To illustrate how these patterns are expressed, in this section
we show some of the patterns that correspond to the situations
described in the running example. The rest of them, together with
the rest of the project’s models, artifacts and programs, can be ac-
cessed and downloaded from our Git repository [3] and the project
website [2].

In the first place, pattern S1 generates a new HotTopic object
in the dataset every time a hashtag is used by both Twitter and
Flickr users at least 100 times in the last 60 minutes. This can be
expressed in terms of a Spark pattern as the Listing in Fig. 1 shows.

In the first part, the rule selects groups of three objects (Hashtag,
Tweet, and Photo) that are related by the incoming Hashtag associ-
ations (contains and tags). Then, our code computes the incoming
links for each node, and selects those results that have more than
100 incoming links. Finally, it creates a HotTopic object for each
matching, and stores it in a Spark RDD with a timestamp and the
id of the hashtag attribute.

Note how in the last instruction, the pattern checks if the new
detected event is in the RDD and in that case updates the dataset
with the new event. In turn, the last filter discards all HotTopic
events created more than one hour ago (3600000 milliseconds), as
mentioned in the description of the event (Sect. 4.1).

Pattern S4 (whose code is not listed here) requires a user, with
an h-index higher than 50, to post three tweets in a row containing
a hashtag that corresponds to a photo in the last hour. If such a
situation is detected, a NiceTwitterPhoto object identifying the
photo is created. Observe how this pattern specifies that the user
publishes a tweet that contains a hashtag. In this case we use a 2-hops
spatial window, meaning that we will traverse all objects of class
TwitterUser that have a direct relationship to class Tweet, and
the Tweet class is directly connected with class Hashtag, but there
is not a direct relation between TwitterUser and Hashtag classes.
Additionally, the pattern checks that the hashtag describes a photo,
therefore it uses 3 hops since it will traverse relation describes or
tags in the metamodel.

In pattern S5, a Flickr user favorites a photo which has been
identified as NiceTwitterPhoto, but none of her followers does.
In this case, we generate a Misunderstood object identifying user.
This pattern shows an example of a NAC (Negative Application
Condition) and complex event from another complex event.

Finally, pattern S6 creates InfluencerTweeted events consider-
ing the 10K most recent tweets. For this we need a length window
of tweets and an aggregation function for calculating the users’
h-index.

As a final remark, note that in this paper we are just concerned
with the expression of such patterns, not on how to determine the
optimal size of the spatial or temporal windows. These are decisions
that depend on the problem domain and on the particular patterns,
and therefore they fall outside the scope of this paper.

5 DISCUSSION
Once we are able to write CEP patterns in terms of Spark ones, this
section discusses some aspects of our proposal, as well as some of
its main benefits and limitations.

5.1 Performance
5.1.1 Comparison with CEP solutions. Performance is a key

issue in data processing systems, specially when dealing with high
volumes of information. CEP systems are optimized for this, and
permit processing large streams of events very efficiently. Apart
from the internal optimizations to handle the events in parallel,
they normally use in-memory structures for storing the events
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Listing 1: Scala code for the HotTopic event.
1 def hotTopic {
2 // Filters photos , tweet , hashtags and incoming links to hashtags

3 val hashtagTweetPhotoFilter = graph . subgraph (
4 vpred = ( id , attr ) =>
5 ( attr . i s I n s t a n c eO f [ Hashtag ]
6 | | ( attr . i s I n s t a n c eO f [ Tweet ] && ( System . currentTimeMillis ( ) − attr . a s I n s t a n c eO f [ Tweet ] . date ) < 3 6 00000 )
7 | | ( attr . i s I n s t a n c eO f [ Photo ] && ( System . currentTimeMillis ( ) − attr . a s I n s t a n c eO f [ Photo ] . dateLastUpdate ) < 3 6 00000 )
8 ) ,
9 epred = t =>
10 t . toString ( ) . contains ( "contains" ) | | t . toString ( ) . contains ( "tags" )
11 )
12 // Computes incoming links to each node

13 val hashtagTweetPhotoFilterInDegrees =
14 hashtagTweetPhotoFilter . o u t e r J o i n V e r t i c e s ( hashtagTweetPhotoFilter . inDegrees ) {
15 ( id , _ , counter ) => counter match {
16 case Some ( counter ) => counter

17 case None => 0 // No inDegree means zero inDegree

18 }
19 }
20 // Gets Hashtags with more than 100 incoming links. Result: HotTopic graph with Hashtags

21 val graphHotTopicAux = hashtagTweetPhotoFilterInDegrees . subgraph (
22 vpred = ( id , attr ) => attr >= 100 ) . mapVertices ( ( id , attr ) => ( System . currentTimeMillis ( ) )
23 )
24 // Result

25 verticesHotTopic = ( graphHotTopicAux . vertices . map ( rdd =>
26 ( rdd . _1 , new HotTopic ( rdd . _1 , rdd . _2 ) ) ) ++ verticesHotTopic ) . reduceByKey ( ( a , b ) =>
27 i f ( a . currentTimestamp > b . currentTimestamp ) { a } else { b } )
28 . f i l t e r { v => ( System . currentTimeMillis ( ) − v . _2 . a s I n s t a n c eO f [ VertexProperty ] . currentTimeStamp ) < 3600000
29 }
30 }

being processed. This is possible because every CEP pattern only
deals with a substream of events (those inside the pattern window)
whose size is bounded.

However, in our case we need to deal with much larger models,
because the graph should contain not only the portion of the tran-
sient data, but also the application’s permanent information—note
that we cannot deal with the events independently, because one of
the assumptions in our case is that they are highly connected to
other objects. Hence, the performance of the kinds of applications
that we have in mind can not be expected to be as optimal as con-
ventional CEP systems. However, we are interested in knowing the
performance penalty that we obtain if we had to deal with similar
data, i.e., our overhead. In other words, we are interested in the
following research question:

R1. Is the performance of our approach similar to the
performance of existing off-the-shelf CEP engines,
when dealing with just streams of information (i.e.,
with no graph structure)?

To respond to this question we have conducted one experiment,
consisting of replicating one typical CEP application using our ap-
proach, and measuring the overhead that we obtain in the response
times with regards to those obtained by the CEP system.

We conducted two versions of this experiment. The first one
consisted in sending a sequence of events to our system and to
the CEP system, every time they occurred. In this case, we were
simulating a realistic behavior of the applications. Secondly, we sent
the same sequence, but all at once, i.e., without any delay between
the events. All tests were run on a machine whose operating system
is Ubuntu 64 bits, with 64Gb of RAM memory, and an Intel Xeon
CPU E5-2680 processor with 16 cores of 2.7 GHz. We used Spark

version 2.3.0 in our implementation, and Esper version 4.7.04 as the
CEP engine.

In CEP, performance is mainly dependent on the window size
defined for the patterns. Therefore we checked with different win-
dow sizes (note that, as mentioned in Section 4.1, only events with
timestamps inside the windows are maintained in the dataset).

The example used to conduct the tests5 assumes a fleet of mo-
torbikes equipped with sensors that produce real-time information
about their state, including the timestamp of the event, the mo-
torbike id, the name of the current location, the speed in Km/h,
the pressure of the two tires measured in BARs, and whether the
driver is on the seat or not. Listing 3 shows some tuples which
are examples of these simple Motorbike events. Timestamps are
expressed using the POSIX time convention, which is roughly the
number of seconds that have elapsed since January 1, 1970 [19].

Listing 3: Simple events
1 Motorbike ( 1 5 2 0 6 7 4 0 0 9 , 1 , "Seville" , 1 0 0 , 3 . 1 , 3 . 1 , t r u e )
2 Motorbike ( 1 5 2 0 6 7 4 0 1 0 , 1 , "Seville" , 9 0 , 3 . 1 , 3 . 1 , t r u e )
3 Motorbike ( 1 5 2 0 6 7 4 0 0 8 , 2 , "Malaga" , 6 2 , 3 . 0 1 , 3 . 0 1 , t r u e )
4 Motorbike ( 1 5 2 0 6 7 4 0 1 1 , 1 , "Seville" , 0 , 3 . 1 , 3 . 1 , t r u e )
5 Motorbike ( 1 5 2 0 6 7 4 0 0 9 , 2 , "Malaga" , 7 0 , 3 . 0 1 , 3 . 0 1 , t r u e )
6 Motorbike ( 1 5 2 0 6 7 4 0 1 2 , 1 , "Seville" , 0 , 3 . 0 7 , 3 . 0 7 , f a l s e )

We are interested inmonitoring these periodic events, generating
derived events when some situations of interest occur. In particular,
we are interested in the following CEP patterns:

• BlowOutTyre: The pressure of one of the tyres of a moving
motorbike goes down from more than 2.0 BAR to less than
1.2 BAR in less than 5 seconds.

4http://www.espertech.com/esper/
5The complete description of the example is available from http://atenea.lcc.uma.
es/index.php/Main_Page/Resources/CEP

http://www.espertech.com/esper/
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/CEP
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/CEP
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.

Listing 2: GraphX/Scala code for the DriverLeftSeat pattern.
1 def driverLeftSeat ( ) {
2 // Group events by motorbikeId

3 val groupMotorbike = graph . vertices . groupBy ( attr => attr . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . motorbikeId )
4 // Sort events by timestamp

5 val groupMotorbikeOrder = groupMotorbike . map ( f =>
6 ( f . _1 , f . _2 . toList . sortBy ( f => f . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . currentTimestamp ) ) ) . collect
7 // Add new events to dataset DriverLeftSeat

8 verticesDriverLeftSeat = verticesDriverLeftSeat ++ groupMotorbikeOrder . flatMap ( f => isDriverLeftSeat ( f . _2 ) )
9 val driverLeftSeatVertices = sc . p a r a l l e l i z e ( verticesDriverLeftSeat ) . zipWithIndex ( ) . map ( r => ( r . _2 . a s I n s t a n c eO f [ VertexId ] , r . _1 ) )
10 // Filter events that are in the defined window

11 verticesDriverLeftSeat = verticesDriverLeftSeat . f i l t e r { attr => ( System . currentTimeMillis ( ) − attr . currentTimeStamp ) < 3000 }
12 graphDriverLeftSeat = Graph ( driverLeftSeatVertices , sc . p a r a l l e l i z e ( ListBuffer [ Edge [ ( Long ) ] ] ( ) ) )
13 }
14 // Function for checking complex event

15 def isDriverLeftSeat ( list : List [ ( VertexId , VertexProperty ) ] ) : ListBuffer [ ( VertexProperty ) ] = {
16 val logger : Logger = LoggerFactory . getLogger ( this . getClass )
17 var result = ListBuffer [ ( VertexProperty ) ] ( )
18 for ( a <− list ; b <− list ) {
19 i f ( a . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . seat == t r u e && b . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . seat == f a l s e
20 && b . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . currentTimestamp > a . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . currentTimestamp
21 && sc . p a r a l l e l i z e ( verticesDriverLeftSeat ) . f i l t e r ( attr =>
22 attr . a s I n s t a n c eO f [ DriverLeftSeatEvent ] . currentTimestamp1 == a . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . currentTimestamp
23 && attr . a s I n s t a n c eO f [ DriverLeftSeatEvent ] . currentTimestamp2 == b . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . currentTimestamp ) . count == 0 ) {
24 val driverLeftSeatEvent = new DriverLeftSeatEvent (
25 System . currentTimeMillis ( ) ,
26 a . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . motorbikeId ,
27 b . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . location ,
28 a . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . seat ,
29 b . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . seat ,
30 a . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . currentTimestamp ,
31 b . _2 . a s I n s t a n c eO f [ MotorbikeEvent ] . currentTimestamp )
32 result += driverLeftSeatEvent

33 }
34 }
35 return result

36 }

• Crash: The speed of a motorbike goes from more than 50
km/h to 0 km/h in less than 3 seconds.

• DriverLeftSeat: The seat sensor detects that the driver has
left the seat.

• OccupantThrownAccident: A motorbike suffers a blow
out of one of its tyres, then a Crash event is detected, and the
driver is thrown out, everything within less than 3 seconds.

To show how these patterns are mapped into Spark patterns,
Fig. 2 shows the Scala code corresponding to pattern DriverLeftSeat,
whose expression in Esper is shown in Fig. 4.

.

Listing 4: Esper code for the DriverLeftSeat pattern.
1 @Name ( 'DriverLeftSeat ' )
2 in se r t into DriverLeftSeat

3 s e l e c t current_timestamp ( ) as timestamp ,
4 a2 . motorbikeId as motorbikeId ,
5 a2 . location as location

6 from pattern [ every
7 a1=Motorbike ( a1 . seat ) −>
8 a2=Motorbike ( ( not a2 . seat ) and ( a1 . motorbikeId=a2 . motorbikeId ) ) ]

The performance figures obtained for experiments are shown in
Tables 1 and 2.

Table 1 compares the results of the Esper system and our imple-
mentation for a different number of input elements, using a realistic
simulation between motorbike events whereby each motorbike gen-
erates one event every second. Both systems are able to process the
events with almost no delay.

Table 1: Performance Figures for the Motorbike Example
with stream simulation (in seconds).

#Events 5K 10K 20K 30K
Esper 5,001 10,001 20,001 30,002
Spark 5,001 10,002 20,001 30,001

Table 2: Performance Figures for the Motorbike Example
without stream simulation (in milliseconds).

#Events 5K 10K 20K 30K
Esper 1,214 2,208 3,610 5,386
Spark 31,039 60,472 119,038 176,424

In turn, Table 2 compares results of Esper system and our im-
plementation for a different number of input elements, when we
feed the complete stream of events to the system without any delay
between them. We can see that our system takes approximately 6
milliseconds to process each event, whereas Esper only takes some
nanoseconds per event.

In any case, as mentioned above, we do not try to compete with
Esper nor other dedicated CEP systems, because in order to be able
to deal with graph-structured information and high volumes of
data, we have to pay the price of storing a large amount of data.
Even so, for some kinds of applications where the event occurrence
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Table 3: Performance Figures for the Twitter and Flickr ex-
ample (in milliseconds).

127K/6500K 260K/14000K 554K/28000K
HotTopic 62.00 45.00 35.66
PopularTwitterPhoto 69.00 77.00 68.00
PopularFlickrPhoto 76.67 51.33 55.67
NiceTwitterPhoto 108.00 101.66 107.67
Misunderstood 46.33 57.33 53.66
InfluencerTweeted 226.00 334.33 424.33

rate is not very high (e.g., more than one event per millisecond),
the response time of our solution is acceptable.

5.1.2 Absolute performance. Apart from estimating the poten-
tial overhead of our solution when compared to pure CEP systems,
we were also concerned about the response times of our prototype
implementation.

R2. Is the performance of our approach acceptable
for dealing with large datasets?

Table 3 shows the response times we have obtained when run-
ning the Flickr and Twitter example with different patterns and
datasets of different sizes. Columns headers indicate the number of
nodes/associations of the models used in each test. For example, the
first one consisted on 127,000 objects and 65 millions of associations
(links) among them, which accounts for a total of 6.627 millions of
elements in the graph. Columns 2 and 3 correspond to models with
14.26 and 28.554 million elements, respectively. The high number
of links between the model objects reflects the high number of pos-
sible relations defined in the metamodel (Fig. 1). Executions were
carried out using the same hardware as we did for the motorbike
experiments. To conduct this experiment we developed a program
that populates our dataset with a specific number of events (coming
from synthetic data previously created) and then run the patterns
in parallel. Roughly, the ratio of transient to persistent data in these
models is 1:11. The complete code for these patterns, and the rest
of the artefacts, can be found at [2].

In general, most results are in the range of milliseconds, some-
thing that can be acceptable for applications with a non very high
event occurrence rate, as explained before.

Furthermore, in a previous approach we used Neo4j and Cypher,
respectively, to represent the graph dataset and to express the
queries. Although the usability of that approach was much better
than the one we obtain with GraphX (see next section), the per-
formance was not acceptable: on the one hand, the response times
were of two orders of magnitude higher with respect to the ones we
get with GraphX (minutes instead of milliseconds); and on the other
hand, the number of nodes we were able to handle in reasonable
time was below 20K (whilst now we are able to deal with models of
28 millions elements in a reasonable time). This is why we decided
to abandon the Neo4j path and to use Spark.

5.2 Expressiveness
In addition to getting an initial assessment of the performance
of our proposal, we also wanted to check its expressiveness for
describing the kinds of queries that we initially devised.

.

Listing 5: Cypher code for the DriverLeftSeat pattern.
1 match
2 ( m1 { seat : 'true' } ) , ( m2 { seat : 'false ' } )
3 where
4 m1 . id=m2 . id and ( m2 . timestamp−m1 . timestamp ) =1
5 create
6 ( m1 ) <−[: EVENT ] − ( : DriverLeftSeat { timestamp : m2 . timestamp ,
7 id : m2 . id , location : m2 . location } ) −[ : EVENT ]−>(m2 )

R3. How expressive is our proposal with regard to
CEP, i.e., can we write all kind of CEP patterns with
GraphX?

We still need to perform a detailed analysis to see if all CEP
patterns can be expressed with our proposal, but initially GraphX is
based on a general purpose and very expressive language like Scala.
For now, we have been able to use Scala to express the patterns for
the case studies used to validate our proposal. However, we plan to
study the benefits that developing a domain-specific language (DSL)
could bring along. Such a DSL would be closer to the domain expert
and tailored at facilitating the definition of graphs and queries that
use vicinity windows, thus improving the expressiveness.

R4. How easy is it to use our proposal, i.e., how easy
is it to write our patterns with GraphX?

This is what we consider one of the weakest aspects of our
proposal at this moment. Writing GraphX patterns in Scala is not
a trivial task. For instance, compare the code shown in figures 2
and 4, corresponding to the DriverLeftSeat pattern expressed
in GraphX/Scala and in Esper, respectively. It is easy to see the
benefits of using a dedicated language such as Esper, specifically
tailored to express these kinds of patterns.

Something that we also realized when writing the patterns is
that most model transformation languages may have difficulties
specifying spatial windows in a natural manner. This is not the case
for temporal windows, since we could use the object’s timestamps
to restrict the selection and matching processes. However, graph
database languages such as Cypher or Gremlin provide very inter-
esting mechanisms for establishing spatial windows, and greatly
simplify the expression of the patterns we are interested in. For
example, Figure 5 shows the DriverLeftSeat pattern expressed in
Cypher.

We are working (as part of our future work) on an automatic
mapping from Cypher to GraphX, which will allow users to write
their patterns in Cypher, and then get the corresponding GraphX
queries. Note that Cypher has a very special feature for representing
spatial windows in a very easy way, since it is possible to specify
both a specific number of hops (over one type, or over any type of
relation in the graph), or a bound on it, in the query [29]. Extending
model transformation languages with these mechanisms could be
an interesting line of research, too. Finally and as mentioned before,
we plan to study the possibility to develop a DSL to express patterns
and queries, and which would be mapped to Graphx concepts.

5.3 Correctness
The use of temporal or spatial windows provides a very interesting
mechanism for tackling scalability issues. In CEP systems, temporal
windows permit dealing with the infinite nature of event streams,



Extending CEP to Graph-structured Information MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

restricting the queries to the events in the window and ignoring
the rest. Similarly, restricting model queries to bounded sets of
elements and their relations (i.e., the submodels determined by the
spatial windows) permit alleviating the severe scalability problems
of queries on huge models. The problem here is that we are trading
performance for correctness, because the results of the queries
on these reduced models may deviate from those obtained when
querying the complete model. Of course, the larger the window the
more accurate the query results—but also at a higher performance
cost. One essential issue here is to be able to estimate the error
made by these approximations [28]. Such estimations fall out of the
scope of this paper, and will be part of our future work.

5.4 Threats to Validity
According to Wohlin et al. [30], there are four basic types of validity
threats that can affect the validity of our study. We cover each of
these in the following paragraphs.
Construct validity — how accurate is the relationship between theory
and what is observed?

A possible construct validity threat, known as the mono-method
bias, is related to the use of one single metric for measuring perfor-
mance. In particular, we have measured the execution time with the
different technologies, queries defined, and input models of differ-
ent size. Other measures for performance exist such as throughput
or instruction per cycle. However, we believe response time is the
most intuitive and easily understandable in our context.
Conclusion validity — are there factors that might affect the ability to
draw correct conclusions from the data obtained from the experiments?

The execution times obtained in all experiments can be influ-
enced by the transitory load of the machine where they have been
obtained. In order to mitigate this threat, we have taken the average
execution time of a number of runs. Furthermore, all experiments
have been run on the same machine and under the same circum-
stances and time range.
Internal validity — are there factors which might affect the results in
the context of the case study?

Concerning the performance figures, we would need to experi-
ment with more case studies to confirm that the processing times of
our proposal are acceptable when dealing with very large datasets
of different kinds. Of course, we can never compete with Esper
or any other CEP engine because they only deal with transient
information. In the kinds of applications we are interested in, the
permanent data needs to be managed, too, and therefore we need to
be able to store it and navigate through the model’s relationships
in the patterns. This imposes some performance penalties, but we
have seen how our proposal has much better performance results
than other solutions based on graph databases, and the results we
obtain are still acceptable.

The performance figures obtained also depend on the concrete ex-
pression of the patterns. Therefore, there might be alternative ways
of writing the same patterns which would yield better response
times. In any case, our current figures are reasonable enough to
show the feasibility of our proposal.

With respect to the expressiveness of our proposal, we would
need to conduct more studies, although our initial experiments have
shown that the use of general-purpose languages such as Scala and

GraphX are expressive enough. There is the issue of how easy it
is to write queries with our proposal, since the more complex the
patterns are, the more difficult they become to debug and prove
correct. In order to mitigate this threat, we plan to develop as future
work a domain-specific language close to the domain expert where
queries can be more easily expressed. This DSL would be then
automatically translated into Graphx for execution.
External validity — to what extent is it possible to generalize our
findings in general?

So far, we cannot claim any performance results outside the
context of the presented case studies. Nevertheless, the evaluation
method used in the case study can indeed be applied on other
examples as well. In addition, the case study may be repeated on
other hardware platforms to analyze, e.g., the impact of the number
of cores or the memory size on the performance.

6 RELATEDWORK
Our work is mainly related to CEP systems (e.g. [6, 7, 14]), although
they do not provide support for dealing with graph-structured
information.

Probably the closest work to ours is [12], where the authors use
VIATRA to implement a very efficient CEP system using incremen-
tal model queries techniques [27] with reactive transformations [11].
The event stream is populated from elementary model changes by
the incremental query engine, and then the CEP engine is in charge
of identifying complex the events that are used to trigger the exe-
cution of the model transformation rules.

We depart from that work in three main aspects. First, they base
their approach on the representation and handling of the incre-
mental changes of the model, instead of using a state-based as we
do here. That is, we represent observations while they represent
changes. Second, we make use of current Spark technologies, in-
stead of the traditional MDE technologies, in order to reach the
performance and scalability required when very large models need
to be efficiently processed. Finally, they do not consider the idea of
spatial windows to restrict the model queries, in order to improve
performance.

The use of spatial windows in models has been already suggested
for dealing with infinite [4] or streaming models [5], where only
a portion of elements (e.g., the ones inside a sliding window) is
available at any given moment in time, or in the case of approximate
model transformations [28]. However, these approaches did not
satisfactorily resolve one important issue: they had to consider
that some connections between model elements could be broken
because not all the elements within a window are available at the
same time, and therefore the models could not be correct. Here
we have used the concept of vicinity graph, which permits tacking
these issues, although also with some associated costs: as in CEP
systems, the use of spatial windows trade efficiency for accuracy,
given that decisions are made based on the local context of the
query, and not on the complete model.

Different graph query languages exist in the model-driven com-
munity, which permit specifying graph patterns to define graph
queries. GROOVE [16], Henshin [1] and other TGG tools, and VIA-
TRA [11] are example of these languages.
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Regarding the use of graph databases for storing large models,
NeoEMF [9] provides a multi-database model persistence frame-
work for very large models, and [10] defines a language to perform
OCL queries on graph databases that outperforms (in terms of mem-
ory footprints and time) other existing solutions. In addition, [8]
defines a mapping from ATL to Gremlin, which enables model
transformations on large models stored in graph databases. As men-
tioned above, we tried with Neo4j and also with Gremlim, but the
results were not good enough when compared to CEP systems.

7 CONCLUSIONS AND FUTUREWORK
This work has explored the extension of CEP concepts and mech-
anisms applied to real models that contain graph-structured in-
formation, beyond sequential streams of events. The concept of
vicinity has been introduced, and a prototypical solution has been
developed to validate the proposal and to analyze its advantages
and limitations.

The proposal has just set the basis and initial ideas for this line
of work, and opens the path for different research alternatives. In
particular, we are interested in investigating what kinds of changes
in the graph structure, patterns and in the architecture of our proto-
typical implementation would serve to optimize the response time
of our current solution. Furthermore, a possible next step for im-
proving the response time could be implementing Spark Streaming
in our system, and combining it with Graphx and Spark SQL to
optimize the patterns.

We are also planning to develop a mapping from Cypher to
GraphX, so that patterns could be expressed in Cypher, which is
much more compact, easy to use, and specific to this type of queries,
and then translated into the more efficient GraphX queries. Another
possibility worth taking into consideration is the development of
our own domain-specific language (DSL) close to the domain expert
knowledge, with the appropriate mechanisms to express queries in
a more natural and lightweight way. This DSL would also have the
corresponding mapping to Graphx, so that the queries expressed
can be executed.

Regarding the concept of vicinity, we are planning to extend MT
transformation languages, and in particular ATL, with the concept
of local context of a query (i.e., vicinity), and then generate the
queries, in a similar way to what [8] do. Moreover, we would like
to study how different strategies (in the style of [13, 21]) could be
defined to improve the accuracy of the results, and how to measure
the error (or lack of accuracy) we are incurring in by selecting a
given spatial window when specifying rules that contain NACs, or
when restricting the queries to small windows.

Finally, many more experiments and case studies are needed to
better assess the expressiveness and performance of our proposal,
and to improve its current results. Although our initial results are
currently encouraging, there is room for improvement in several
aspects, as we have discussed in this paper.
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