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Abstract

Land use and land cover (LULC) maps are remote sensing products that are used to classify areas into different land-
scapes. Data fusion for remote sensing is becoming an important tool to improve classical approaches. In addition, soft
computing techniques such as machine learning or evolutivecomputation are often applied to improve the final LULC
classification. In this paper, a method based on an ensemble of multiple classifiers to improve LULC map accuracy
is shown. The method works in two processing levels: first, anevolutionary algorithm (EA) for label-dependent fea-
ture weighting transforms the feature space by assigning different weights to every attribute depending on the class.
Then the second level builds a statistical raster from LIDARand image data fusion following a pixel-oriented and
feature-based strategy that uses a support vector machine (SVM) and a weighted k-NN restricted stacking, taking into
account the special characteristics of spatial data. A classical SVM, the original restricted stacking (R-STACK) and
the current improved method (EVOR-STACK) are compared. Theresults show that the evolutive approach obtains
the best results in the context of the real data from a riparian area in southern Spain.

Keywords: data fusion, ensembles, evolutionary computation, feature weighting, label dependence, remote sensing

1. Introduction

Remote sensing is an important discipline for many tasks such as resource management [1], environmental moni-
toring [2] and disaster response [3]. For a long time, machine learning techniques have been used to improve remote
sensing performance and applicability. In addition, the use of active sensors such as LIDAR (light detection and rang-
ing) has recently spread to improve the classical remote sensing products [4], which were mainly based on images.
This change involves a data complexity increase and makes machine learning and data fusion techniques even more
important for extracting meaningful information from remote sensing data.

Remote sensing knowledge can be gathered in several products, among which land use and land cover (LULC)
maps are arguably one of the most important. LULC maps are based on a classification of the terrain depending
on its morphologic or functional characteristics, and theyare a main tool in the development of policies to manage
the natural environment. Automatic pixel classification, which is generally supervised, is usually the first step to
extract maps from remote sensing data. Several techniques from machine learning have been used in this context with
satisfactory results, e.g., k-NN [5], Naive Bayes [6] and SVM [7].

Although the validity of machine learning has been widely demonstrated in the remote sensing context, more
research is needed to fulfil the standard requirements of many remote sensing products, and especially for LULC
maps [8]. Thus, the final classification has to maintain not only the global accuracy that is the general standard but
also satisfactory partial accuracies for every label. Thus, some researchers [9] have started to exploit optimisation
techniques (genetic algorithms) in their approaches, showing that a weighted execution produces an improvement of
the classification results.

Evolutionary computation is usually used to search optimalweighting for both structural and functional aspects to
improve the predictive models for machine learning. There are essentially three main areas of weighting application in
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supervised machine learning: support vector machine optimisation, artificial neural networks (training and topology)
and feature weighting.

Support vector machines (SVMs) are learning algorithms proposed by Vapnik [10, 11]. A SVM constructs one or
more hyperplanes in a high-dimensional space by means of a kernel function. Therefore, the kernel function election
and its proper parameterisation are critical for the performance of the classifier. Many authors have used evolutionary
computation to solve this problem with pure [12] or real-coded [13, 14] genetic algorithms. Other authors have also
explored the use of genetic programming for kernel assembling [15] or developed hybrid algorithms [16], which
usually have an evolutionary module in a first level and a SVM applied for classification in a second one.

Artificial neural networks (ANNs) consist of a simulation ofthe structures and behaviour of biological neural
systems by means of mathematical models [17]. Evolutionarycomputation has been used to train the set of neural
network parameters and to design its structure. From the viewpoint of training the network, the common approach is to
create the genome by encoding the weights of the connections. This may be done by typical bit-based encoding [18],
but there are also more efficient proposals [19]. The main problem with the approaches based on genetic algorithms
is the lack of efficient crossover operators because it is difficult to establish which functional parts of the network are
to be exchanged. For this reason, other techniques based on genetic programming have been more successful [20].
There have also been several studies on evolutionary computation applied to the design of neural network architecture
and weighting optimisation. In these cases, the fitness function is usually multi-objective [21] because it must take
into account different aspects (structural and functional) of the network.

Techniques that use genetic algorithms to find a set of weights for the feature space, allowing greater accuracy in
the classification process, are common in the literature [22]. The usual individual encoding is a set of real values that
represent the weights of each feature. The fitness is defined by the classification process itself. Therefore, the search
process can be viewed as a global task in which the optimal weights are considered in terms of their features regardless
of the label assigned to each instance. Moreover, the use of several evolutionary techniques (genetic algorithms and
evolutionary strategies) for both instance selection and feature weighting has proven possible [23], and an optimal
weight searching dependent on each label has recently been tested [24] with good results in biomedical contexts.

This work can be seen as a combined application of ensembles in remote sensing that takes advantage of contextual
information from multi-source (LIDAR and aerial images) data and the use of evolutive computation to improve the
separability of pixels for each label. Thus, we improve a method called R-STACK [25] (based on the stacking of a
SVM and multiple k-NN classifiers) with a matrix of weights obtained in the pre-processing stage [26] to give rise to
a new method called EVOR-STACK for the following three purposes:

• Improve the general accuracy of an automatically generatedLULC map.

• Show an easy way to improve the quality of models when intelligent techniques are applied to LIDAR and
imagery fusion data.

• Obtain new information about what features are most important to classify each landscape by studying the
resulting weights per label.

The rest of this paper is organised as follows: Section 2 presents the study area for this work and provides a brief
description of the different landscapes in the area. Section 3 provides a detailed description of the proposed method.
The results and discussion are presented in Section 4 and Section 5, respectively. Finally, Section 6 is devoted to
summarising the conclusions and to discussing future linesof work.

2. Data description

A LIDAR system is a remote sensor technology that is able to register object heights. The process starts with
the emission of light (usually laser). The light impacts on asurface and its reflected signal is caught by the LIDAR
system. Finally, the system measures the time elapsed from emission to reception to establish the distance between
the emitter and the object that produced the return. This process gives rise to a cloud point database in which for every
point, it is possible to obtain the following data: spatial position (i.e., x, y and z coordinates), intensity of return and
number of returns in a sequence (if a pulse caused multiple impacts). These measurements and the RGB values in an
orthophoto are used in this work to obtain statistical features on which the whole classification is based.
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Figure 1: Study area.

Our LIDAR data were collected in coastal areas of the province of Huelva (Figure 1). The pulses were geo-
referenced and correctly validated by the distributor of the data and included 1,384,875 records for an area of 1.5km2.
The reported precision indicates a maximum error of 0.5m in the x-y positions and 0.15m in the z position. Along
with the LIDAR flight, aerial photographs were taken of the area with a resolution of 0.5m2. The study area is situated
in southern Spain at the mouth of the Tinto and Odiel rivers. This area is near the city of Huelva and presents a mix
of urban and natural areas. The natural areas can be classified into five subclasses: watered zones, marshland and
vegetation (low, middle and high). The high vegetation in the area consists of scarce trees of the genuseucalyptus.
The middle vegetation consists of different types of Mediterranean bushes that principally surround roads and urban
areas. Pastures are classified as low vegetation and includebare earth areas. The urban areas are also classified into
three subclasses: roads and railways, dumps and urban areas(buildings and industrial areas).

3. Method

The method proposed, called EVOR-STACK (Figure 2), is a new contextual [27] method to improve thematic
maps by means of a remote sensing data fusion, evolutionary computation and complex classifiers (ensembles) [28].

The first step is the generation of a raster with a set of statistics to obtain a feature-based data fusion representation.
It is important to set up a resolution according to each data source. For our study area, we work with a 3m2 resolution.
Moreover, LIDAR data pre-processing is needed to avoid someproblems related to LIDAR [29]. To extract the object
heights, a digital elevation model (DEM) is needed to construct the real heights from the coordinate z. For our area,
the method described in Gonçalves et al. [30] is selected.

The second step is done by an EA (evolutionary algorithm), which is used to obtain a multi-label weighting matrix
[26]. This matrix provides an optimised set of weights to improve the final classification, as will be seen later.

Finally, an R-STACK [25] method is applied to obtain the finalmap. The set of weights from the previous phase is
used to modify the feature space on the second level of the R-STACK method. In this way, a more accurate separation
among neighbours is possible. In the following subsections, a detailed description is presented for every step.

3.1. Feature extraction and preprocess

The process presented in this article is a feature-based approach that fuses information from aerial images and
LIDAR to generate high quality and detailed thematic maps. In this way, the first step is to calculate a set of variables
from the image RGB values, LIDAR intensity, heights and their distributions for each pixel. Thus, sixty-five different
features are calculated for every pixel; these features aremostly extracted from the literature [31][32]. In Table 1,
a summary of these features can be seen. To the best of our knowledge, some of them are original in this work,
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input
l: LIDAR data
o: Orthophotograhy data
output
m: LULC map
begin
1. Build a matrixraster in which every cell involves a physical position with
the corresponding statistics froml ando
2. Select a training set fromraster, calledtrain
3. Label each pixel intrain using expert knowledge
4. Execute a multi-label EA to extract the matrixW
5. Let svmbe a SVM model fromtrain
6. Usesvmto classify every pixel inraster
7. For each pixelp in raster

7.1. Collect the neighborhood ofp in a sets
7.2. UseW to modify every pixel froms
7.3. Build a weighted-distance k-NN model,knn, from s
7.4. Useknn to classifyp

8. Return a mapmwith every pixel spatial position and its label
end

Figure 2: The LULC classification method based on an EVOR-STACK algorithm (steps 4 to 8).

e.g., the number of empty neighbours (NEMP) or the simulatednormalised difference vegetation index (SNDVI). The
NEMP feature is extracted from LIDAR and represents the absence of information, which is useful to detect watery
areas because LIDAR is not able to reflect off of water. The SNDVI has proven useful for simulation of the classical
normalised difference vegetation index (NDVI). The NDVI value is generatedfrom the near infrared band (NIR) and
the red band (R), as can be seen in Equation 1. In our case, it cannot be calculated because the NIR band is not
available in LIDAR or orthophotography. Thus, the new attribute SNDVI is used to simulate the NDVI using the
intensity (I) from LIDAR (Equation 2) as a near-infrared value that approximates the real NIR value.

NDVI =
NIR− R
NIR+ R

(1)

S NDVI=
I − R
I + R

(2)

Before generation of the model, a pre-process has to be carried out. Three different filters are executed. First,
every missing attribute value is replaced with the corresponding average value. Then the data are normalised. Finally,
a Correlation Feature Selection method (CFS from Weka [33] with default parameters) is applied to reduce the search
space (see variables in bold in Table 1). Note that two of the selected features are derived from SNDVI, which
demonstrates the importance of this feature in the final classification. With the selected features already generated,
the next phase is the execution of the EA, which is characterised in the next subsection.

3.2. Evolutionary weighting algorithm

The basic structure of an EA can be seen in Figure 3: first, a random initial population of solutions is built, and
the individual fitness of each solution is evaluated. Then each generation is formed from the previous one by crossing
and mutation. Thus, the best solution is determined step by step through natural selection.

The goal of the proposed EA is to find an optimal matrix of real values to weight the features selected in the
previous phases. Thus, the matrix has a row for each label anda column for each feature, and each cell contains a
weight that is used to complete the classification process inthree steps:

1. The weights are applied to the training instances according to their label.
2. Given a test instance, the weighting matrix is utilised todefine a per-label weighted distance.
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Variable Description Variable Description

SNDVIMIN SNDVI minimum SNDVIMAX SNDVI maximum

SNDVISTD SNDVI standard INTRASLP Intra-pixel slope

deviation

SNDVIAVG SNDVI average CRR Canopy relief ratio

CV (*) (GCV) Coefficient of variation EXTRASLP Inter-pixel slope

MIN (*) ( RMIN) Minimum PEC Penetration coefficient

MAX (*) ( HMAX) Maximum TOTALR Total of returns

STD (*) Standard deviation PCTN1 Unique return percentage

AVG (*) ( GAVG,IAVG, Average PCTN2 Double return percentage

BAVG,HAVG) PCTN3 Three or more

returns percentage

VAR (*) ( RVAR) Variance PCTR1 First return percentage

SKEW (*) Skewness PCTR2 Second return percentage

KURT (*) (GKURT) Kurtosis PCTR3 Third or later

return percentage

RANGE (*) (HRANGE) Range PCTR31 PCTR3 over PCTR1

NOTFIRST Second or later return PCTR21 PCTR2 over PCTR1

NEMP Number empty PCTR32 PCTR3 over PCTR2

neighbours

Table 1: Sixty-five candidate variables. In bold, the final selected features. Variables with (*) are calculated for eachband of a pixel: Height (H),
Intensity (I), Red (R), Green (G) and Blue (B).

Build the initial population of individuals
Evaluate the fitness of each individual and save the best individual
while not terminationdo

Select several individuals for reproduction according to acriterion
Create new individuals through crossover and mutation operations
Evaluate the fitness of new individuals and save the best individual
Replace the population with the new individuals

end while

Figure 3: Evolutionary algorithm.
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3. Then the test instance is classified by the nearest neighbour label calculated using the distance defined in the
previous step.

A deeper description of the EA and its characteristics is provided in the next paragraphs.

3.2.1. Individual codification.
To execute the evolutive algorithm, an individual description is required. In this case, an individual of the popu-

lation is a matrix whose cells each represent a weight for a label and a feature. Hence, for a training set, there is a
row for each label that has as many columns as features, so theinitial population is a set of matrices ofb rows andf
columns, whereb is the total number of labels andf is the total number of features. In addition, the initial population
is built by initialising each cell of every matrix with a value randomly chosen from the interval [−1, 1].

3.2.2. Fitness function.
The training data consist of a matrixP with t rows (each representing a normalised feature instance, from now on

a pixel) andf columns (one per feature). A class label is assigned with thelabel function on each instance ofP. For
simplicity, we assume that the label is an integer between 1 and b. Thus, a pixelpi is a row ofP (a vector of [0, 1] f

such thatlabel(pi) = l ∈ {1..b}). A transformation is given by an individualW = [wi j ]b× f . Thus, a pixelp can be
transformed topl by a labell according to the following equation:

∀ j = 1... f : pl
j = wl j ∗ p j (3)

A particular case can be seen when the label of the instance totransform is known. In this case, we denotep’ as
the transformed pixel, and thus,p’ is defined as:

p′ = plabel(p) (4)

As seen in Figure 4, the training setP is divided inton bins (3). The weights of the individual that are being
evaluated are applied ton− 1 bins (5), obtaining the setP’ by means of Equation 3, and the remaining bag is used as
the initial test (6 et seq.). The nearest pixel fromP’ to each pixele from the test binBk is calculated (6-9) according
to the distancedW defined in Equation 5.

dW(e, p′) = dEuclidean(elabel(p′), p′) (5)

The nearest neighbour of each test pixel according to the distance defined in Equation 5 is returned. If its assigned
label does not match its original test label, its fitness is increased (13, 14). In addition, once a test pixel has been
transformed with the nearest neighbour weights, it becomespart ofP′, reinforcing the training (10).

3.2.3. Crossover and mutation.
In the design of an EA, it is always important to establish a coherent search criterion in the space of possible

solutions, especially if the encoding of the individuals belongs toR. This can only be achieved with a proper selection
of crossover and mutation operators.

A crossover operation for two individuals selected by the roulette-wheel method is applied to every corresponding
row (theith row of an individual is crossed with theith row of the other one) because they have the same label.

In addition, two techniques have been selected for the generation of the new individuals: the uniform crossover
and the BLX-α crossover [34]. Both techniques are mutually exclusive, and they are each chosen with a probability
of 0.5.

The mutation operator has been defined to increase or decrease the value of a weight according to a probabilityp.
The increase or decrease is a random valueδ that satisfies:

δ = r/z, where
r ∈ [0, 1], chosen randomly and
z ∈ N

In this case,z is a decreasing value selected empirically for the evolutive process so that the variation is higher in
the first generations and lower in the latest ones.
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1: input
2: W: Weight matrix
3: P: Pixel matrix
4: label: a function that returns a pixel label for every pixel.
5: output
6: f itness: classification error which is the objective function to be minimised.
7: begin
8: fitness=0
9: for i = 1 to mdo

10: We divideP into n bags:B1, ...,Bn

11: for all bagBk do
12: According to Equation 4, we apply theW transformation to every pixel from the remaining

n− 1 bags, obtaining the set of pixelsP′

13: for all pixel pi in Bk do
14: for all label l ∈ {1..b} do
15: We construct the transformed pixelpl

i according to Equation 3
16: We calculatedl =minimum distance frompl

i to the pixels ofP′ according to Equation
5

17: We apply theW transformation topi according to its nearest neighbour label, and we
add it toP′

18: end for
19: We calculate the minimum from the distancesdl . Let h ∈ {1..b}, the label of the pixel of

P′ that gives rise todl .
20: if the original test label ofpi , h then
21: f itness= f itness+ 1
22: end if
23: end for
24: end for
25: end for
26: end

Figure 4: Fitness function.

3.3. R-STACK method

Once the weighting matrix is obtained (step 4 in Figure 2), the R-STACK method is applied. R-STACK is based
on a modified stacking of two well-known classifiers (SVM and k-NN). To generate the SVM model, the SMO Weka
implementation is used [35]. The second level of the R-STACKmethod is implemented by means of an ad-hoc k-NN.

In this way, the stacking general scheme is modified to adapt it to geographic data. The classification task is then
done in two steps: first, the SVM takes every non-weighted feature from the pixels in the training area to build an
initial model that classifies every pixel from the study zone(steps 5 and 6). At that point, a classical SVM application
to the images is obtained. Later, a specific model is built foreach pixel taking the feature values of its neighbours
in the pixel raster as a training set, which involves a strongrelationship (physical dependence) among the training
pixels and the current pixel (step 7). In the end, the k-NN classifies the current pixel using the model built by its
weighted neighbours according to the distance described inEquation 5. This step has been modified from the original
R-STACK method.

For the study area, the number of neighbours and the level of adjacency are selected empirically. We work with
k = 3 and 8-adjacency, i.e., each 3-NN is developed with just 8 instances of the pixel surrounding area.

4. Results

To establish the accuracy of EVOR-STACK, it is compared withtwo other classifiers: classical SVM and R-
STACK. This comparison is based on two well-known testing strategies: a hold-out process and a 10-fold cross-
validation (10-FCV).
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User class W. M. R. L. V. M. V. H. V. B. D. User’s
\sample

W. 2148 0 0 0 0 0 3 0 99.9%
M. 2 1171 45 8 38 0 2 0 92.5%
R. 6 25 962 39 24 0 26 1 88.8%

L. V. 0 114 0 572 0 0 0 0 83.4%
M. V. 0 112 22 12 310 0 8 0 66.8%
H. V. 0 8 2 0 49 234 36 0 71.1%

B. 42 11 50 20 4 115 1072 0 81.6%
D. 0 58 7 2 0 0 0 142 67.9%

Producer’s 97.7% 78.1% 88.4% 87.6% 72.9% 67.0% 93.5% 99.3%

KIA 0.855
Correctly
classified 88.1%

Table 2: Confusion matrix for the SVM classical approach. Labels: W. (Water), M. (Marshlands), R. (Roads and railways),L.V. (Low Vegetation),
M. V. (Middle Vegetation), H. V. (High Vegetation), B. (Buildings and other industrial areas) and D. (Dumps).

A hold-out process is the traditional kind of remote sensingtesting. Thus, every algorithm is trained with 618
instances (training set) and the accuracies are checked with a test set (7501 non-training instances) with both sets
extracted by visual inspection. Table 2, Table 3 and Table 4 show the confusion matrices for a classical SVM, the
R-STACK method and the EVOR-STACK approach, respectively.Due to its random origin, multiple execution for an
EA is recommended to establish its quality [36]. In our case,the results shown for EVOR-STACK are the average case
obtained over three evolutive processes. In addition, Table 5 shows the per-class detailed accuracies for every method.
Concretely, it shows each class value for the true positive rate (TP-Rate) and the harmonic mean of the precision and
recall (F-measure), which is described in Equation 8. The F-measure is based on the values of TP, FP and FN, which
are the total positives, false positives and false negatives, respectively, calculated from the confusion matrix. It also
provides the per-class average and minimum across the different partial results and the global accuracy attained by
each algorithm. It is important to underline that every method is executed with default WEKA parameters so that the
differences among them are due to underlying structural characteristics and not to different parameterisations.

recall =
T P

T P+ FN
(6)

precision=
T P

T P+ FP
(7)

F–measure=
2 ∗ precision∗ recall

precision+ recall
(8)

The second type of testing is a 10-FCV. We select all the classified pixels as the data set (training and test sets,
8120 instances). The per-class and averaged accuracy results from the 10-FCV for every approach can be seen in
Table 6, in which the average instance of EVOR-STACK obtainsthe best results.

A comparison based on algorithm ranks is also established tocomplete the comparison among the approaches.
For this purpose, we need a set of results for every approach on several distinct data sets. Because remote sensing data
are expensive to generate, the comparison has to rely on an artificial data split. In our case, 10 splits are created from
the original test data so that each split contains about 812 instances. Then a 10-FCV process is made for every split.
The results (100 partial values) are then registered. In this way, a fair comparison of the algorithms can be obtained
by average ranks. According to the 100 registered partial results, our evolutive approach ranks first as can be seen in
Table 7, which shows the average ranking for each classifier.In this case, a value of 1 for a rank means that a classifier
is the best for a split, while a rank of 3 implies that it is the worst. Therefore, the ideal objective for our approach is
to reach an average ranking value of 1, which would mean that EVOR-STACK would be the best for every split. A
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User class W. M. R. L. V. M. V. H. V. B. D. User’s
\sample

W. 2151 0 0 0 0 0 0 0 100.0%
M. 2 1199 32 9 24 0 0 0 95.2%
R. 7 16 1000 38 8 0 13 1 91.6%

L. V. 0 111 0 575 0 0 0 0 85.1%
M. V. 0 82 23 13 346 0 0 0 73.5%
H. V. 0 2 2 0 42 261 22 0 78.1%

B. 30 6 34 16 2 104 1122 0 84.3%
D. 0 33 6 0 0 0 0 170 81.8%

Producer’s 98.2% 82.9% 90.4% 88.5% 82.2% 70.2% 96.5% 99.4%

KIA 0.89
Correctly
classified 90.8%

Table 3: Confusion matrix for the R-STACK method. Labels: W.(Water), M. (Marshlands), R. (Roads and railways), L.V. (Low Vegetation), M.
V. (Middle Vegetation), H. V. (High Vegetation), B. (Buildings and other industrial areas) and D. (Dumps).

User class W. M. R. L. V. M. V. H. V. B. D. User’s
\sample

W. 2149 0 0 0 0 0 2 0 99.9%
M. 2 1135 54 10 62 0 3 0 89.7%
R. 3 2 988 34 18 1 37 0 91.2%

L.V. 0 73 0 613 0 0 0 0 89.4%
M. V. 0 33 19 12 392 0 8 0 84.5%
H. V. 0 2 3 0 12 280 32 0 85.1%

B. 13 0 9 13 0 122 1157 0 88.1%
D. 0 1 4 0 0 0 0 204 97.6%

Producer’s 99.2% 91.1% 91.7% 89.9% 81.0% 69.5% 93.4% 100%

KIA 0.89
Correctly
classified 92.21%

Table 4: Confusion matrix for the EVOR-STACK method. Labels: W. (Water), M. (Marshlands), R. (Roads and railways), L.V.(Low Vegetation),
M. V. (Middle Vegetation), H. V. (High Vegetation), B. (Buildings and other industrial areas) and D. (Dumps).
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SVM R-STACK EVOR-STACK
Class TP-Rate F-Mea. TP-Rate F-Mea. TP-Rate F-Mea.

Water 0.999 0.988 1 0.991 0.999 0.998

Marsh 0.925 0.847 0.952 0.886 0.897 0.939

Roads 0.888 0.886 0.916 0.91 0.912 0.949

Low. Veg. 0.834 0.854 0.851 0.868 0.894 0.942

Middle Veg. 0.668 0.697 0.735 0.776 0.845 0.916

High Veg. 0.711 0.69 0.781 0.74 0.851 0.917

Buildings 0.816 0.871 0.843 0.9 0.881 0.934

Dumps 0.679 0.807 0.818 0.898 0.976 0.988

Minimun 0.668 0.69 0.735 0.74 0.845 0.917
Average 0.815 0.83 0.862 0.871 0.907 0.948

Global Average
Accuracy 88.1% 90.8% 92.21%

Table 5: Per-class results of the hold-out test for every method.

SVM R-STACK EVOR-STACK
Class TP-Rate F-Mea. TP-Rate F-Mea. TP-Rate F-Mea.

Water 0.997 0.986 0.994 0.985 0.994 0.993

Marsh 0.939 0.902 0.967 0.932 0.992 0.983

Roads 0.909 0.906 0.928 0.909 0.978 0.969

Low. Veg. 0.958 0.906 0.966 0.919 0.984 0.985

Middle Veg. 0.77 0.767 0.792 0.827 0.948 0.966

High Veg. 0.882 0.883 0.915 0.912 0.98 0.969

Buildings 0.861 0.914 0.887 0.934 0.979 0.985

Dumps 0.476 0.611 0.564 0.706 0.92 0.954

Minimun 0.476 0.611 0.564 0.706 0.92 0.954
Average 0.738 0.799 0.779 0.846 0.972 0.976

Global Average
Accuracy 91.38% 93.09% 98.23%

Table 6: Per-class results of the 10-FCV for every method.
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Algorithm Ranking

SVM 2.645
R-STACK 1.96

EVOR-STACK 1.395

Table 7: Average rankings of the algorithms.

i algorithm z= (R0 − Ri)/S E p Holm

2 SVM 8.838835 9.672204E-19 0.025
1 R-STACK 3.995153 6.465240E-5 0.05

Table 8: Holm table forα = 0.05.

comparison alone is not enough to show the superiority of a given approach, as has been noted by several authors [37].
We have to demonstrate that the differences among the rankings of the algorithms are significant. Therefore, we utilise
a procedure for robustly comparing classifiers across multiple data sets [38] to evaluate the statistical significance of
the measured differences in algorithm ranks. The chosen procedure involves the use of statistical tests. Our purpose
is to compare our approach with the other two classifiers in terms of accuracy. This task is accomplished by the
Friedman test and the Holm post-hoc procedure.

The null hypothesis for the Friedman test is that the ranks are not significantly different (their averages are not
sufficiently different from the mean rankr = 2). When the test is applied to assure the significance level of the results,
its p-value is lower than 7.27x10−11, so the null hypothesis is rejected. The next step is the use of the Holm method.
This procedure is specially indicated for rigorous comparisons to detect significant pair-wise differences among all
the classifiers. Thus, for our study, the null hypothesis is that a pair-wise comparison exists between an algorithm and
our control method, EVOR-STACK, that does not show significant differences. The p-value obtained is lower than
the required value for every pair-wise comparison (see column Holm in Table 8), so the null hypothesis is rejected.
Having found that the measured average ranks are significantly different (atα = 0.05), our analysis based on ranks
reveals that the accuracy of EVOR-STACK is significantly better than that of the other studied approaches for the
area.

The label-dependent feature-weighting evolutive algorithm provides the weights for every feature according to
each class. This information also permits us to select the best possible features to distinguish among classes. For the
study area, the four features with the highest weights by class can be seen in Table 9.

Finally, the resulting thematic maps for every classifier can be seen in Figure 5 beside the LIDAR intensity im-
age used for this study, the original orthophoto of the area and the official LULC map of the Regional Ministry of
Andalusia.

5. Discussion

This study provides four important facts that have to be taken into account. The first is related to global accuracy
(see Table 2, 3 and 4). For our study area, the three methods obtain overall accuracies over 85%, which suggests
that a feature-based approach is very suitable for thematicmap generation. Moreover, the average accuracy for the
EVOR-STACK is 92.21%, which is 1.45% better than the original R-STACK, which obtains a 90.76% accuracy for
the hold-out process. Both methods improve on the results ofthe classical SVM, which provides near 88% accuracy.
These differences are even greater if we focus on the 10-FCV results.

A deeper study of the confusion matrices shows that the most problematic classes are middle and high vegetation
because their user’s (true positive rate) and producer’s accuracies (precision) are the lowest. The differences among
them can be slight in some cases (high bushes vs. low trees), and some intensity values can falsify the classification
because LIDAR intensity values for multi-impact returns are difficult to deal with [29]. In this context, the intensity
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Class Features

1 HRANGE IGKURT INTRASLP IRVAR

2 HMAX INTRASLP IRMIN IRVAR

3 IMEAN IGKURT IRMIN HMAX

4 HMEAN IRVAR IMEAN HRANGE

5 INTRASLP TOTALR HMAX IBMEAN

6 HMAX MEANSNDVI INTRASLP TOTALR

7 MEANSNDVI GCV MAXSNDVI INTRASLP

8 IRVAR INTRASLP TOTALR HMEAN

Table 9: Most important features according to their weightsfor the study zone.

Figure 5: First row: Orthophoto, LIDAR intensity image and official LULC map. Second row: final classification obtained by SVM, R-STACK and
EVOR-STACK, respectively. Colour legend: blue for water, grey for roads and railways, brown for marshland, yellow for low vegetation, lighter
green for middle vegetation, green for high vegetation, purple for dumps and red for buildings and other human-impactedareas.
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is modified and the actual value is unknown. To avoid this problem, some authors do not consider the multi-impact
returns and instead delete them from the final study. Becausewe are working with low-resolution LIDAR data (0.5
pulses\m2 approx.), such a solution is not possible for us. Thus, correction of the LIDAR intensity is still an important
issue, and for our feature-based approach, the only possible way to solve this problem is the definition of vegetation
indexes that are not so dependent on LIDAR intensity or the addition of new bands provided by other sensors (e.g.,
infrared cameras). When we analyse the 10-FCV results, we detect another problematic class: dumps. This class
produces worse results for this test than for the hold-out process, which leads us to consider the problem of imbalance
data. This problem will be discussed later and may also affect the case of high and middle vegetation in the same way,
although its effects are less visible.

The insufficiency of a global accuracy of only 85% when attempting to generate a good thematic map is well-
known [5]. Thus, every class has to be over the 85%, but this condition is barely satisfied even for official maps. In
this context, the second important conclusion extracted from our study is that EVOR-STACK is useful for solving this
kind of problem. Looking at the true positive rate of each method (Table 5), it is possible to recognise that only the
EVOR-STACK method shows an accuracy above 84.5% for each class, whilst the other methods have classes with
below 80% accuracy. In the case of the 10-FCV results, this finding is even clearer (Table 6).

It is also important to underline that although the tests performed obtain good results, the post-classification visual
inspection of the resulted map is not completely satisfactory. Salt and pepper noise is still a problem that undermines
the visual quality of the map. This behaviour is caused by an imbalance problem. Remote sensing data are usually
imbalanced because land cover distribution in the environment is not uniform. This problem has been raised by several
authors [39, 40, 41] , but more research is needed if higher levels of applicability of thematic maps are desired.

Lastly, after the application of the EA, every class has its own set of features that best determine its label. This
information provides an important feature selection tool and allows us to establish a more accurate class separation.
The importance of a sensor can be evaluated easily by noting which features are more important for each class. In our
case, LIDAR has the greatest significance level for almost every class, as expected. Table 5 contains four features per
label with the highest coefficients. For our study area, INTRASLP, HMAX and IRVAR are the most frequent in the
list because the classification relies mainly on heights, differences among neighbouring heights and red-band value
variance. The proportion between LIDAR and image variablesis also important. In our case, it is almost the same (5
image features, 6 LIDAR features and 2 mixed indexes).

6. Conclusions

In this paper, we presented a method based on a multiple-classifier ensemble to improve LULC map accuracy. The
method worked at two processing levels. First, a label-dependent feature-weighting EA transformed the feature space,
assigning different weights to every attribute depending on each class. Then the second level constructed a statistical
raster from LIDAR and image fusion data following a pixel-oriented and feature-based strategy. Finally, the data were
classified using an ensemble of a SVM and a weighted k-NN, taking into account the special characteristics of spatial
data. A classical SVM, the original restricted stacking (R-STACK) and the current improved method (EVOR-STACK)
were compared. The results showed that the evolutive approach obtained the best results in the context of the real data
from a riparian area of Huelva (Spain).

Even though the results are satisfactory, there are still important problems to fix. The most important problem is
imbalanced data. Remote sensing data provide a clear example in which the risk of dealing with imbalanced data is
very high. Some interesting approaches have recently appeared in the literature [42] to solve this problem, and remote
sensing data can be a perfect benchmark to apply these new techniques to the real world. Finally, some problems
are inherent in pixel-oriented approaches, such as the detection of partial artificial structures. In the future, it would
be very interesting to apply a prior phase in which, at low addition to the computational cost, an object-oriented
segmentation and classification could be carried out. In this way, the most difficult structures could be extracted and
classified by means of recognition techniques from the computer vision world.
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