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Abstract

Land use and land cover (LULC) maps are remote sensing piothat are used to classify areas intfietient land-
scapes. Data fusion for remote sensing is becoming an ianutdctol to improve classical approaches. In addition, soft
computing techniques such as machine learning or evolodir®utation are often applied to improve the final LULC
classification. In this paper, a method based on an enserhbialtiple classifiers to improve LULC map accuracy
is shown. The method works in two processing levels: firsgwaiutionary algorithm (EA) for label-dependent fea-
ture weighting transforms the feature space by assignifigrdint weights to every attribute depending on the class.
Then the second level builds a statistical raster from LID#&RI image data fusion following a pixel-oriented and
feature-based strategy that uses a support vector ma@iéd)(and a weighted k-NN restricted stacking, taking into
account the special characteristics of spatial data. AsidakSVM, the original restricted stacking (R-STACK) and
the current improved method (EVOR-STACK) are compared. rEselts show that the evolutive approach obtains
the best results in the context of the real data from a ripafaa in southern Spain.

Keywords: data fusion, ensembles, evolutionary computation, featigighting, label dependence, remote sensing

1. Introduction

Remote sensing is an important discipline for many taskk asaesource management [1], environmental moni-
toring [2] and disaster response [3]. For a long time, mazkéarning techniques have been used to improve remote
sensing performance and applicability. In addition, theafsactive sensors such as LIDAR (light detection and rang-
ing) has recently spread to improve the classical remotsisgmproducts [4], which were mainly based on images.
This change involves a data complexity increase and makehinalearning and data fusion techniques even more
important for extracting meaningful information from ref@@ensing data.

Remote sensing knowledge can be gathered in several pgpdumebng which land use and land cover (LULC)
maps are arguably one of the most important. LULC maps aredbas a classification of the terrain depending
on its morphologic or functional characteristics, and they a main tool in the development of policies to manage
the natural environment. Automatic pixel classificatiorhieh is generally supervised, is usually the first step to
extract maps from remote sensing data. Several techniqusiiachine learning have been used in this context with
satisfactory results, e.g., k-NN [5], Naive Bayes [6] and\&M].

Although the validity of machine learning has been widelyndastrated in the remote sensing context, more
research is needed to fulfil the standard requirements of/menote sensing products, and especially for LULC
maps [8]. Thus, the final classification has to maintain ndy time global accuracy that is the general standard but
also satisfactory partial accuracies for every label. Tisosne researchers [9] have started to exploit optimisation
techniques (genetic algorithms) in their approaches, sipthat a weighted execution produces an improvement of
the classification results.

Evolutionary computation is usually used to search optinegihting for both structural and functional aspects to
improve the predictive models for machine learning. Theeeeasentially three main areas of weighting application in
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supervised machine learning: support vector machine ogdtion, artificial neural networks (training and topoldgy
and feature weighting.

Support vector machines (SVMs) are learning algorithmgpsed by Vapnik [10, 11]. A SVM constructs one or
more hyperplanes in a high-dimensional space by means ahalkenction. Therefore, the kernel function election
and its proper parameterisation are critical for the penforce of the classifier. Many authors have used evolutionary
computation to solve this problem with pure [12] or real-edd13, 14] genetic algorithms. Other authors have also
explored the use of genetic programming for kernel assemili5] or developed hybrid algorithms [16], which
usually have an evolutionary module in a first level and a S\@idliad for classification in a second one.

Artificial neural networks (ANNSs) consist of a simulation thfe structures and behaviour of biological neural
systems by means of mathematical models [17]. Evolutionamgputation has been used to train the set of neural
network parameters and to design its structure. From thvgpamnt of training the network, the common approachis to
create the genome by encoding the weights of the connecfitiis may be done by typical bit-based encoding [18],
but there are also mordteient proposals [19]. The main problem with the approaclasgth on genetic algorithms
is the lack of dicient crossover operators because it ficlilt to establish which functional parts of the network are
to be exchanged. For this reason, other techniques baseenetigprogramming have been more successful [20].
There have also been several studies on evolutionary catipuapplied to the design of neural network architecture
and weighting optimisation. In these cases, the fitnessifamés usually multi-objective [21] because it must take
into account dierent aspects (structural and functional) of the network.

Techniques that use genetic algorithms to find a set of weighthe feature space, allowing greater accuracy in
the classification process, are common in the literaturg [P2e usual individual encoding is a set of real values that
represent the weights of each feature. The fitness is definttelrlassification process itself. Therefore, the search
process can be viewed as a global task in which the optimaht&are considered in terms of their features regardless
of the label assigned to each instance. Moreover, the usevefa evolutionary techniques (genetic algorithms and
evolutionary strategies) for both instance selection aaduire weighting has proven possible [23], and an optimal
weight searching dependent on each label has recently bstel {24] with good results in biomedical contexts.

This work can be seen as a combined application of ensenntiesiote sensing that takes advantage of contextual
information from multi-source (LIDAR and aerial images)aland the use of evolutive computation to improve the
separability of pixels for each label. Thus, we improve ahuodtcalled R-STACK [25] (based on the stacking of a
SVM and multiple k-NN classifiers) with a matrix of weightstalmed in the pre-processing stage [26] to give rise to
a new method called EVOR-STACK for the following three pses:

e Improve the general accuracy of an automatically genettdtéd” map.

e Show an easy way to improve the quality of models when igefit techniques are applied to LIDAR and
imagery fusion data.

e Obtain new information about what features are most impoitia classify each landscape by studying the
resulting weights per label.

The rest of this paper is organised as follows: Section 2gmtsghe study area for this work and provides a brief
description of the dferent landscapes in the area. Section 3 provides a detaitdiption of the proposed method.
The results and discussion are presented in Section 4 anidrs8&¢ respectively. Finally, Section 6 is devoted to
summarising the conclusions and to discussing future figgrk.

2. Datadescription

A LIDAR system is a remote sensor technology that is able ¢@ster object heights. The process starts with
the emission of light (usually laser). The light impacts osuaface and its reflected signal is caught by the LIDAR
system. Finally, the system measures the time elapsed fnoigsi®n to reception to establish the distance between
the emitter and the object that produced the return. Thisga®gives rise to a cloud point database in which for every
point, it is possible to obtain the following data: spatiakjtion (i.e., X, y and z coordinates), intensity of retunda
number of returns in a sequence (if a pulse caused multigdadts). These measurements and the RGB values in an
orthophoto are used in this work to obtain statistical fezdwn which the whole classification is based.
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Figure 1: Study area.

Our LIDAR data were collected in coastal areas of the praviatHuelva (Figure 1). The pulses were geo-
referenced and correctly validated by the distributor efdata and included 1,384,875 records for an area dfrit5
The reported precision indicates a maximum error ofr i the x-y positions and 0.1% in the z position. Along
with the LIDAR flight, aerial photographs were taken of theawith a resolution of 0.67. The study area is situated
in southern Spain at the mouth of the Tinto and Odiel rivetsis Brea is near the city of Huelva and presents a mix
of urban and natural areas. The natural areas can be clddntiiefive subclasses: watered zones, marshland and
vegetation (low, middle and high). The high vegetation ia #inea consists of scarce trees of the geucalyptus
The middle vegetation consists offiiirent types of Mediterranean bushes that principally sumaoads and urban
areas. Pastures are classified as low vegetation and incirdesarth areas. The urban areas are also classified into
three subclasses: roads and railways, dumps and urban(boddsgs and industrial areas).

3. Method

The method proposed, called EVOR-STACK (Figure 2), is a nemtextual [27] method to improve thematic
maps by means of a remote sensing data fusion, evolutiooanpatation and complex classifiers (ensembles) [28].

The first step is the generation of a raster with a set of stz obtain a feature-based data fusion representation.
It is important to set up a resolution according to each datiace. For our study area, we work with aBresolution.
Moreover, LIDAR data pre-processing is needed to avoid somklems related to LIDAR [29]. To extract the object
heights, a digital elevation model (DEM) is needed to cartdtthe real heights from the coordinate z. For our area,
the method described in Goncgalves et al. [30] is selected.

The second step is done by an EA (evolutionary algorithmjckvis used to obtain a multi-label weighting matrix
[26]. This matrix provides an optimised set of weights to img the final classification, as will be seen later.

Finally, an R-STACK [25] method is applied to obtain the finap. The set of weights from the previous phase is
used to modify the feature space on the second level of th&A&CK method. In this way, a more accurate separation
among neighbours is possible. In the following subsectiametailed description is presented for every step.

3.1. Feature extraction and preprocess

The process presented in this article is a feature-basadagpthat fuses information from aerial images and
LIDAR to generate high quality and detailed thematic mapghis way, the first step is to calculate a set of variables
from the image RGB values, LIDAR intensity, heights andtidéstributions for each pixel. Thus, sixty-fiveftirent
features are calculated for every pixel; these featuresnagly extracted from the literature [31][32]. In Table 1,
a summary of these features can be seen. To the best of oultddy®y some of them are original in this work,
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input

I: LIDAR data

o: Orthophotograhy data
output

m: LULC map

begin

1. Build a matrixrasterin which every cell involves a physical position with
the corresponding statistics frdnando

. Select a training set fronaster, calledtrain

. Label each pixel ittrain using expert knowledge

. Execute a multi-label EA to extract the matvik

. Letsvmbe a SVM model fromrain

. Usesvmito classify every pixel imaster

. For each pixep in raster

7.1. Collect the neighborhood g@fin a sets

7.2. UseW to modify every pixel froms

7.3. Build a weighted-distance k-NN modkhn from s

7.4. Useknnto classifyp

8. Return a mapn with every pixel spatial position and its label
end

~NOoO O~ WDN

Figure 2: The LULC classification method based on an EVOR{&RAlgorithm (steps 4 to 8).

e.g., the number of empty neighbours (NEMP) or the simulatedthalised dference vegetation index (SNDVI). The
NEMP feature is extracted from LIDAR and represents the mtxsef information, which is useful to detect watery
areas because LIDAR is not able to reflefitad water. The SNDVI has proven useful for simulation of thassical
normalised diference vegetation index (NDVI). The NDVI value is generdtech the near infrared band (NIR) and
the red band (R), as can be seen in Equation 1. In our casejribthe calculated because the NIR band is not
available in LIDAR or orthophotography. Thus, the new &tite SNDVI is used to simulate the NDVI using the
intensity (1) from LIDAR (Equation 2) as a near-infrared walthat approximates the real NIR value.

NIR-R

NDVI_m (1)
| -R

SNDVI—m 2)

Before generation of the model, a pre-process has to beedavtit. Three dierent filters are executed. First,
every missing attribute value is replaced with the corresjimy average value. Then the data are normalised. Finally,
a Correlation Feature Selection method (CFS from Weka [38] edefault parameters) is applied to reduce the search
space (see variables in bold in Table 1). Note that two of tHecsed features are derived from SNDVI, which
demonstrates the importance of this feature in the finakiflaation. With the selected features already generated,
the next phase is the execution of the EA, which is charagdiin the next subsection.

3.2. Evolutionary weighting algorithm

The basic structure of an EA can be seen in Figure 3: first, doraninitial population of solutions is built, and
the individual fithess of each solution is evaluated. Themegeneration is formed from the previous one by crossing
and mutation. Thus, the best solution is determined stepdpyterough natural selection.

The goal of the proposed EA is to find an optimal matrix of reallies to weight the features selected in the
previous phases. Thus, the matrix has a row for each labehawdumn for each feature, and each cell contains a
weight that is used to complete the classification procew@e steps:

1. The weights are applied to the training instances acogttdi their label.
2. Given a test instance, the weighting matrix is utilisedefine a per-label weighted distance.

4



Variable Description Variable Description
SNDVIMIN SNDVI minimum SNDVIMAX SNDVI maximum
SNDVISTD SNDVI standard INTRASLP Intra-pixel slope

deviation
SNDVIAVG SNDVI average CRR Canopy relief ratio
CV (*) (GCV) Codficient of variation EXTRASLP Inter-pixel slope
MIN (*) (RMIN) Minimum PEC Penetration céiecient
MAX (*) (HMAX) Maximum TOTALR Total of returns
STD (*) Standard deviation PCTN1 Unique return percentage
AVG (*) (GAVG,IAVG, Average PCTN2 Double return percentage
BAVG,HAVG) PCTN3 Three or more
returns percentage
VAR (*) (RVAR) Variance PCTR1 First return percentage
SKEW (*) Skewness PCTR2 Second return percentage
KURT (*) (GKURT) Kurtosis PCTR3 Third or later
return percentage
RANGE (*) (HRANGE) Range PCTR31 PCTR3 over PCTR1
NOTFIRST Second or later return PCTR21 PCTR2 over PCTR1
NEMP Number empty PCTR32 PCTR3 over PCTR2

neighbours

Table 1: Sixty-five candidate variables. In bold, the findésted features. Variables with (*) are calculated for ebahd of a pixel: Height (H),

Intensity (1), Red (R), Green (G) and Blue (B).

Build the initial population of individuals

Evaluate the fitness of each individual and save the bestichdil

while not terminatiordo
Select several individuals for reproduction according toiterion
Create new individuals through crossover and mutationasjmers
Evaluate the fitness of new individuals and save the bestithdil
Replace the population with the new individuals

end while

Figure 3: Evolutionary algorithm.



3. Then the test instance is classified by the nearest neiglidoel calculated using the distance defined in the
previous step.

A deeper description of the EA and its characteristics isigied in the next paragraphs.

3.2.1. Individual codification.

To execute the evolutive algorithm, an individual desdoipis required. In this case, an individual of the popu-
lation is a matrix whose cells each represent a weight foballand a feature. Hence, for a training set, there is a
row for each label that has as many columns as features, soitiabpopulation is a set of matrices bfrows andf
columns, wher® is the total number of labels arfdis the total number of features. In addition, the initial plation
is built by initialising each cell of every matrix with a vaduandomly chosen from the intervail, 1].

3.2.2. Fitness function.

The training data consist of a mat#xwith t rows (each representing a normalised feature instanaa,fow on
a pixel) andf columns (one per feature). A class label is assigned witletie function on each instance Bf For
simplicity, we assume that the label is an integer betweemdbaThus, a pixelp; is a row ofP (a vector of [Q1]"
such thatabel(p;)) = | € {1..b}). A transformation is given by an individuslY = [wij]ux. Thus, a pixelp can be
transformed tq' by a label according to the following equation:

Vj =1.f: pll =W * Pj (3)

A particular case can be seen when the label of the instartcartsform is known. In this case, we denpteas
the transformed pixel, and thys, is defined as:

p; — pIabel(p) (4)

As seen in Figure 4, the training setis divided inton bins (3). The weights of the individual that are being
evaluated are applied to- 1 bins (5), obtaining the s€&' by means of Equation 3, and the remaining bag is used as
the initial test (6 et seq.). The nearest pixel fremto each pixek from the test birBy is calculated (6-9) according
to the distancely defined in Equation 5.

dw(e p’) = dEuclidear(elabe‘(p/), p’) 5)

The nearest neighbour of each test pixel according to thardis defined in Equation 5 is returned. If its assigned
label does not match its original test label, its fithess @eéased (13, 14). In addition, once a test pixel has been
transformed with the nearest neighbour weights, it becqraefP’, reinforcing the training (10).

3.2.3. Crossover and mutation.

In the design of an EA, it is always important to establish herent search criterion in the space of possible
solutions, especially if the encoding of the individualtngs toR. This can only be achieved with a proper selection
of crossover and mutation operators.

A crossover operation for two individuals selected by thdetie-wheel method is applied to every corresponding
row (thei™ row of an individual is crossed with th# row of the other one) because they have the same label.

In addition, two techniques have been selected for the géinarof the new individuals: the uniform crossover
and the BLXea crossover [34]. Both techniques are mutually exclusive, they are each chosen with a probability
of 0.5.

The mutation operator has been defined to increase or dedreagalue of a weight according to a probabifity
The increase or decrease is a random valtiat satisfies:

0 =r/z, where
r € [0,1], chosen randomly and
ze N

In this casezis a decreasing value selected empirically for the evadytrocess so that the variation is higher in
the first generations and lower in the latest ones.



1: input
2: W: Weight matrix
3: P: Pixel matrix
4: label: a function that returns a pixel label for every pixel.
5: output
6: fitness classification error which is the objective function to bmimised.
7: begin
8: fitness=0
9: for i = 1to mdo
10:  We divideP intonbags:B;, ..., B,
11:  for all bagBy do
12: According to Equation 4, we apply tt transformation to every pixel from the remaining
n — 1 bags, obtaining the set of pixdPs
13: for all pixel p; in B, do
14: for all labell € {1..b} do
15: We construct the transformed pixgllaccording to Equation 3
16: We calculatad, = minimum distance fromn} to the pixels of”” according to Equation
5
17: We apply theW transformation tqo; according to its nearest neighbour label, and we
add it toP’
18: end for
19: We calculate the minimum from the distanaksLet h € {1..b}, the label of the pixel of
P’ that gives rise tal,.
20: if the original test label of; # hthen
21: fitness= fitness+ 1
22: end if
23: end for
24:  endfor
25: end for
26: end

Figure 4: Fitness function.

3.3. R-STACK method

Once the weighting matrix is obtained (step 4 in Figure 2,RRSTACK method is applied. R-STACK is based
on a modified stacking of two well-known classifiers (SVM anN k). To generate the SVM model, the SMO Weka
implementation is used [35]. The second level of the R-STA#hod is implemented by means of an ad-hoc k-NN.

In this way, the stacking general scheme is modified to adéapgeographic data. The classification task is then
done in two steps: first, the SVM takes every non-weightetufearom the pixels in the training area to build an
initial model that classifies every pixel from the study z¢steps 5 and 6). At that point, a classical SVM application
to the images is obtained. Later, a specific model is builefoch pixel taking the feature values of its neighbours
in the pixel raster as a training set, which involves a strozgtionship (physical dependence) among the training
pixels and the current pixel (step 7). In the end, the k-NNsifees the current pixel using the model built by its
weighted neighbours according to the distance describEduration 5. This step has been modified from the original
R-STACK method.

For the study area, the number of neighbours and the levaljatancy are selected empirically. We work with
k = 3 and 8-adjacency, i.e., each 3-NN is developed with jusstairces of the pixel surrounding area.

4. Reaults

To establish the accuracy of EVOR-STACK, it is compared wviitlo other classifiers: classical SVM and R-
STACK. This comparison is based on two well-known testirmgtegies: a hold-out process and a 10-fold cross-
validation (10-FCV).



User class W. M. R. L. V. M. V. H. V. B. D. | User's
\sample
W. 2148 0 0 0 0 0 3 0 | 99.9%
M. 2 1171 45 8 38 0 2 0 | 92.5%
R. 6 25 962 39 24 0 26 1 | 88.8%
L. V. 0 114 0 572 0 0 0 0 | 83.4%
M. V. 0 112 22 12 310 0 8 0 | 66.8%
H. V. 0 8 2 0 49 234 36 0 | 71.1%
B. 42 11 50 20 4 115 1072 0 | 81.6%
D. 0 58 7 2 0 0 0 142 | 67.9%
Producer's 97.7% 78.1% 88.4% 87.6% 72.9% 67.0% 93.5% 99.3%
KIA 0.855
Correctly
classified 88.1%

Table 2: Confusion matrix for the SVM classical approachbéla: W. (Water), M. (Marshlands), R. (Roads and railwaysy, (Low Vegetation),
M. V. (Middle Vegetation), H. V. (High Vegetation), B. (Bdiings and other industrial areas) and D. (Dumps).

A hold-out process is the traditional kind of remote sendesiing. Thus, every algorithm is trained with 618
instances (training set) and the accuracies are checkbadawist set (7501 non-training instances) with both sets
extracted by visual inspection. Table 2, Table 3 and Tableotvshe confusion matrices for a classical SVM, the
R-STACK method and the EVOR-STACK approach, respectiviglie to its random origin, multiple execution for an
EA is recommended to establish its quality [36]. In our c#seresults shown for EVOR-STACK are the average case
obtained over three evolutive processes. In addition elalshows the per-class detailed accuracies for every method
Concretely, it shows each class value for the true positite (TP-Rate) and the harmonic mean of the precision and
recall (F-measure), which is described in Equation 8. Tmedasure is based on the values of TP, FP and FN, which
are the total positives, false positives and false negatiespectively, calculated from the confusion matrix.l$ba
provides the per-class average and minimum across ffexatit partial results and the global accuracy attained by
each algorithm. It is important to underline that every roeltts executed with default WEKA parameters so that the
differences among them are due to underlying structural clesistats and not to dierent parameterisations.

TP
recall = ——— 6
TP+FN ©)
TP
recision= ———— 7
P TP+ FP Q)
Fmeasure= 2% prgc!3|on* recall (8)
precision+ recall

The second type of testing is a 10-FCV. We select all the ifiedixels as the data set (training and test sets,
8120 instances). The per-class and averaged accuracysrésuh the 10-FCV for every approach can be seen in
Table 6, in which the average instance of EVOR-STACK obttiesbest results.

A comparison based on algorithm ranks is also establishedrplete the comparison among the approaches.
For this purpose, we need a set of results for every appraasbweral distinct data sets. Because remote sensing data
are expensive to generate, the comparison has to rely oriéiti@rdata split. In our case, 10 splits are created from
the original test data so that each split contains about@diamnces. Then a 10-FCV process is made for every split.
The results (100 partial values) are then registered. by, a fair comparison of the algorithms can be obtained
by average ranks. According to the 100 registered partsilt® our evolutive approach ranks first as can be seen in
Table 7, which shows the average ranking for each clasdifi¢his case, a value of 1 for a rank means that a classifier
is the best for a split, while a rank of 3 implies that it is therat. Therefore, the ideal objective for our approach is
to reach an average ranking value of 1, which would mean t&R=STACK would be the best for every split. A
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User class

W.

M.

R. L. V. M. V. H. V. B. D. | User's
\sample
W. 2151 0 0 0 0 0 0 0 | 100.0%
M. 2 1199 32 9 24 0 0 0 95.2%
R. 7 16 1000 38 8 0 13 1| 91.6%
L. V. 0 111 0 575 0 0 0 0 85.1%
M. V. 0 82 23 13 346 0 0 0 73.5%
H. V. 0 2 2 0 42 261 22 0 78.1%
B. 30 6 34 16 2 104 1122 0 | 84.3%
D. 0 33 6 0 0 0 0 170 | 81.8%
Producer’'s 98.2% 82.9% 90.4% 885% 82.2% 70.2% 96.5% 99.4%
KIA 0.89
Correctly
classified 90.8%

Table 3: Confusion matrix for the R-STACK method. Labels: (Water), M. (Marshlands), R. (Roads and railways), L.V.{L'degetation), M.

V. (Middle Vegetation), H. V. (High Vegetation), B. (Buildgs and other industrial areas) and D. (Dumps).

User class W. M. R. L. V. M. V. H. V. B. D. | User’'s
\sample
W. 2149 0 0 0 0 0 2 0 | 99.9%
M. 2 1135 54 10 62 0 3 0 | 89.7%
R. 3 2 988 34 18 1 37 0| 91.2%
L.V. 0 73 0 613 0 0 0 0 | 89.4%
M. V. 0 33 19 12 392 0 8 0 | 84.5%
H. V. 0 2 3 0 12 280 32 0 | 85.1%
B. 13 0 9 13 0 122 1157 0 | 88.1%
D. 0 1 4 0 0 0 0 204 | 97.6%
Producer's 99.2% 91.1% 91.7% 89.9% 81.0% 69.5% 93.4% 100%
KIA 0.89
Correctly
classified 92.21%

Table 4: Confusion matrix for the EVOR-STACK method. Labéé (Water), M. (Marshlands), R. (Roads and railways), (\dw Vegetation),

M. V. (Middle Vegetation), H. V. (High Vegetation), B. (Bdings and other industrial areas) and D. (Dumps).



SVM R-STACK EVOR-STACK

Class TP-Rate F-Mea. TP-Rate F-Mea. TP-Rate F-Mea.
Water 0.999 0.988 1 0.991 0.999 0.998
Marsh 0.925 0.847 0.952 0.886 0.897 0.939
Roads 0.888 0.886 0.916 0.91 0.912 0.949
Low. Veg. 0.834 0.854 0.851 0.868 0.894 0.942
Middle Veg. 0.668 0.697 0.735 0.776 0.845 0.916
High Veg. 0.711 0.69 0.781 0.74 0.851 0.917
Buildings 0.816 0.871 0.843 0.9 0.881 0.934
Dumps 0.679 0.807 0.818 0.898 0.976 0.988
Minimun 0.668 0.69 0.735 0.74 0.845 0.917
Average 0.815 0.83 0.862 0.871 0.907 0.948
Global Average

Accuracy 88.1% 90.8% 92.21%

Table 5: Per-class results of the hold-out test for everyhotkt

SVM R-STACK EVOR-STACK
Class TP-Rate F-Mea. TP-Rate F-Mea. TP-Rate F-Mea.
Water 0.997 0.986 0.994 0.985 0.994 0.993
Marsh 0.939 0.902 0.967 0.932 0.992 0.983
Roads 0.909 0.906 0.928 0.909 0.978 0.969
Low. Veg. 0.958 0.906 0.966 0.919 0.984 0.985
Middle Veg. 0.77 0.767 0.792 0.827 0.948 0.966
High Veg. 0.882 0.883 0.915 0.912 0.98 0.969
Buildings 0.861 0.914 0.887 0.934 0.979 0.985
Dumps 0.476 0.611 0.564 0.706 0.92 0.954
Minimun 0.476 0.611 0.564 0.706 0.92 0.954
Average 0.738 0.799 0.779 0.846 0.972 0.976
Global Average
Accuracy 91.38% 93.09% 98.23%

Table 6: Per-class results of the 10-FCV for every method.
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Algorithm Ranking

SVM 2.645
R-STACK 1.96
EVOR-STACK  1.395

Table 7: Average rankings of the algorithms.

i algorithm z=(Ry-R)/SE p Holm
2 SVM 8.838835 9.672204E-19 0.025
1 R-STACK 3.995153 6.465240E-5 0.05

Table 8: Holm table forr = 0.05.

comparison alone is not enough to show the superiority of@gapproach, as has been noted by several authors [37].
We have to demonstrate that théfdiences among the rankings of the algorithms are signifiddwetrefore, we utilise

a procedure for robustly comparing classifiers across plaltiata sets [38] to evaluate the statistical significarice o
the measured fferences in algorithm ranks. The chosen procedure invahesgge of statistical tests. Our purpose
is to compare our approach with the other two classifiers imgeof accuracy. This task is accomplished by the
Friedman test and the Holm post-hoc procedure.

The null hypothesis for the Friedman test is that the ranksat significantly dferent (their averages are not
suficiently different from the mean rark= 2). When the test is applied to assure the significance léikbaesults,
its p-value is lower than.27x10°%%, so the null hypothesis is rejected. The next step is the tigediolm method.
This procedure is specially indicated for rigorous comgans to detect significant pair-wisefférences among all
the classifiers. Thus, for our study, the null hypothesikés & pair-wise comparison exists between an algorithm and
our control method, EVOR-STACK, that does not show signifiadifferences. The p-value obtained is lower than
the required value for every pair-wise comparison (seerooltiolm in Table 8), so the null hypothesis is rejected.
Having found that the measured average ranks are signifiadififerent (ate = 0.05), our analysis based on ranks
reveals that the accuracy of EVOR-STACK is significantlytéethan that of the other studied approaches for the
area.

The label-dependent feature-weighting evolutive algoniprovides the weights for every feature according to
each class. This information also permits us to select teegmessible features to distinguish among classes. For the
study area, the four features with the highest weights bssatan be seen in Table 9.

Finally, the resulting thematic maps for every classifian ba seen in Figure 5 beside the LIDAR intensity im-
age used for this study, the original orthophoto of the arehthe dficial LULC map of the Regional Ministry of
Andalusia.

5. Discussion

This study provides four important facts that have to benako account. The first is related to global accuracy
(see Table 2, 3 and 4). For our study area, the three methddm awverall accuracies over 85%, which suggests
that a feature-based approach is very suitable for themadjt generation. Moreover, the average accuracy for the
EVOR-STACK is 92.21%, which is 1.45% better than the orifReBTACK, which obtains a 90.76% accuracy for
the hold-out process. Both methods improve on the resuttseoflassical SVM, which provides near 88% accuracy.
These diferences are even greater if we focus on the 10-FCV results.

A deeper study of the confusion matrices shows that the nrobigmatic classes are middle and high vegetation
because their user’s (true positive rate) and producecracies (precision) are the lowest. Th&eliences among
them can be slight in some cases (high bushes vs. low treesjiane intensity values can falsify the classification
because LIDAR intensity values for multi-impact returne dificult to deal with [29]. In this context, the intensity
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Class Features

1 HRANGE IGKURT INTRASLP IRVAR
2 HMAX INTRASLP IRMIN IRVAR

3 IMEAN IGKURT IRMIN HMAX

4 HMEAN IRVAR IMEAN HRANGE
5 INTRASLP TOTALR HMAX IBMEAN
6 HMAX MEANSNDVI  INTRASLP TOTALR
7 MEANSNDVI GCV MAXSNDVI  INTRASLP
8 IRVAR INTRASLP TOTALR HMEAN

Table 9: Most important features according to their weidbtghe study zone.

Figure 5: First row: Orthophoto, LIDAR intensity image anfical LULC map. Second row: final classification obtained byM§\R-STACK and
EVOR-STACK, respectively. Colour legend: blue for wateeygfor roads and railways, brown for marshland, yellow fiw lvegetation, lighter
green for middle vegetation, green for high vegetationpfeufor dumps and red for buildings and other human-impaateds.
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is modified and the actual value is unknown. To avoid this f@mol some authors do not consider the multi-impact
returns and instead delete them from the final study. Becaasare working with low-resolution LIDAR data (0.5
pulse§m? approx.), such a solution is not possible for us. Thus, ctioe of the LIDAR intensity is still an important
issue, and for our feature-based approach, the only pessiy to solve this problem is the definition of vegetation
indexes that are not so dependent on LIDAR intensity or thilitiath of new bands provided by other sensors (e.qg.,
infrared cameras). When we analyse the 10-FCV results, wexdanother problematic class: dumps. This class
produces worse results for this test than for the hold-outess, which leads us to consider the problem of imbalance
data. This problem will be discussed later and may affexcathe case of high and middle vegetation in the same way,
although its €ects are less visible.

The insdficiency of a global accuracy of only 85% when attempting toegate a good thematic map is well-
known [5]. Thus, every class has to be over the 85%, but thislition is barely satisfied even fofficial maps. In
this context, the second important conclusion extractaah four study is that EVOR-STACK is useful for solving this
kind of problem. Looking at the true positive rate of eachhoelt(Table 5), it is possible to recognise that only the
EVOR-STACK method shows an accuracy above 84.5% for eads,ckehilst the other methods have classes with
below 80% accuracy. In the case of the 10-FCV results, thisrfqnis even clearer (Table 6).

Itis also important to underline that although the testégrared obtain good results, the post-classification visual
inspection of the resulted map is not completely satisfgc®alt and pepper noise is still a problem that undermines
the visual quality of the map. This behaviour is caused bynamaiance problem. Remote sensing data are usually
imbalanced because land cover distribution in the enviemtris not uniform. This problem has been raised by several
authors [39, 40, 41], but more research is needed if highetdef applicability of thematic maps are desired.

Lastly, after the application of the EA, every class has \it® get of features that best determine its label. This
information provides an important feature selection taal allows us to establish a more accurate class separation.
The importance of a sensor can be evaluated easily by notir@hvfeatures are more important for each class. In our
case, LIDAR has the greatest significance level for almostyeslass, as expected. Table 5 contains four features per
label with the highest cdkcients. For our study area, INTRASLP, HMAX and IRVAR are theanfrequent in the
list because the classification relies mainly on height$einces among neighbouring heights and red-band value
variance. The proportion between LIDAR and image varialsledso important. In our case, it is almost the same (5
image features, 6 LIDAR features and 2 mixed indexes).

6. Conclusions

In this paper, we presented a method based on a multiplsdfésgnsemble to improve LULC map accuracy. The
method worked at two processing levels. First, a label-ddest feature-weighting EA transformed the feature space,
assigning dferent weights to every attribute depending on each classn e second level constructed a statistical
raster from LIDAR and image fusion data following a pixelemted and feature-based strategy. Finally, the data were
classified using an ensemble of a SVM and a weighted k-NNn¢gikito account the special characteristics of spatial
data. A classical SVM, the original restricted stackinggRACK) and the currentimproved method (EVOR-STACK)
were compared. The results showed that the evolutive appzained the best results in the context of the real data
from a riparian area of Huelva (Spain).

Even though the results are satisfactory, there are stilbittant problems to fix. The most important problem is
imbalanced data. Remote sensing data provide a clear ezamyhich the risk of dealing with imbalanced data is
very high. Some interesting approaches have recently apgeathe literature [42] to solve this problem, and remote
sensing data can be a perfect benchmark to apply these nbknidgaes to the real world. Finally, some problems
are inherent in pixel-oriented approaches, such as thettwieof partial artificial structures. In the future, it widu
be very interesting to apply a prior phase in which, at lowithold to the computational cost, an object-oriented
segmentation and classification could be carried out. Bwlaiy, the most diicult structures could be extracted and
classified by means of recognition techniques from the caermision world.
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