
Automated Analysis of Feature Models using Atomic Sets ∗

Sergio Segura
Department of Computer Languages and Systems

University of Seville
Av Reina Mercedes S/N, 41012 Seville, Spain

sergiosegura AT us.es

Abstract

Scalability is recognized as a key challenge in the au-
tomated analysis of Feature Models (FMs). Current solu-
tions in this context mainly propose using different logic
paradigms as a way to improve the performance at the so-
lution level while the problem remains the same. Atomic
Sets (ASs) were proposed as a promising solution for the
simplification of FMs (i.e. reduction of the number of vari-
ables) in the context of automated analysis. However, years
after their introduction, the lack of specific algorithms and
performance results still hinder its integration into current
proposals and tools. In this paper, we set the basis for the
usage of ASs as a generic technique for the automated anal-
ysis of FMs. In particular, we first propose a specific algo-
rithm to construct the ASs of an FM. Then, we present a
performance test measuring the degree of improvement (in
time and memory) when implementing ASs into CSP, BDD
and SAT-based solutions.

1. Introduction

The automated analysis of FMs enables the extraction of
information from the models through the implementation
of a number of analysis operations. The problems of fea-
ture combinatorics related to these operations are accepted
to be NP-hard and can take a long time to solve [2]. Current
solutions in this context mainly focus on the usage of dif-
ferent logic paradigms and solvers as a way to improve the
performance at the solution level [2, 5, 6]. However, few
efforts have been made to study how improving the perfor-
mance through the treatment of FMs in the domain of the
problem.

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and the Andalusian Government project ISABEL (TIC-
2533)

In [10], Zhanget al. proposed a propositional logic-
based method for the verification of FMs at different bind-
ing times. In their work, the authors proposed the usage of
so-calledatomic setsas a way to improve the efficiency of
the process at the problem level. An atomic set represents
a group of features (at least one) that can be treated as a
unit during the analysis of an FM. According to Zhanget
al. working with atomic sets instead of features may of-
ten reduce the size of the problem to solve improving effi-
ciency. However, even when atomic sets seems a promising
technique, the benefits of using it are still unknown by the
research community and the lack of specific algorithms and
empirical results difficults its integration into current pro-
posals.

In this paper, we set the basis for the usage of atomic sets
as a generic technique for the automated analysis of FMs.
To this aim, we report the lessons learned from integrating
atomic sets into our framework for the automated analysis
of FMs, FAMA1 [5, 9]. In particular, we first propose an
algorithm to construct the atomic sets of a given FM. Then,
we detail the results of a performance test measuring the
degree of improvement (in time and memory) when imple-
menting atomic sets into CSP, BDD and SAT-based solu-
tions integrated in FAMA.

The remainder of the paper is structured as follows: in
Section 2, the automated analysis of FMs and atomic sets
are introduced. Our algorithm for the computation of the
atomic set of an FM and the experimental results are pre-
sented in Section 3. Finally, we summary our conclusions
in Section 4.

2. Preliminaries

2.1. Automated Analysis of Feature Models

The analysis of an FM consists on the observation of
its properties. Typical operations of analysis allow finding

1http://www.isa.us.es/fama/



Figure 1. Atomic sets

out whether an FM is void (i.e. it represents no products),
whether it contains errors (e.g. feature that can not be part
of any products) or what is the number of product of the
software product line represented by the model.

In order to enable the automated analysis of FMs spe-
cific logic paradigms and solvers have been proposed. In
particular, the analysis is generally performed in two steps:
i) First, the model is translated into an specific logic repre-
sentation such as a Constraint Satisfaction Problem (CSP)
[3], a SATisfiability problem (SAT) [1] or a Binary Deci-
sion Diagram (BDD) [8],ii) Then, off-the-shelf solvers are
used to automatically perform a variety of operations on the
logic representation of the model.

The available empirical results [5, 6] and surveys [4] sug-
gests that there is neither an optimum logic paradigm nor
solver to perform all the operations identified on FMs. As a
result of this, current research efforts as the FAMA frame-
work integrate different paradigms and solver in order to
combine the best of all of them in terms of performance [7].

2.2. Atomic Sets

The usage ofatomic setsfor the automated analysis of
FMs was proposed by Zhanget al. back in 2004 [10].
An atomic set represent a group of features (at least one)
that can be treated as a unit during the analysis of an FM.
The intuitive idea of atomic sets is that mandatory features
and their parent features can be treated as a whole in cer-
tain analysis operation without altering the result. This is
because those features can never appear in a product sep-
arately. Figure 1 depicts an FM inspired by the mobile
phone industry. The areas delimited by dashed lines illus-
trate the atomic sets. As an example, feature’USB’ can only
be part of a product if its parent feature,’Connectivity’, is
also part of the product. Thus, both features can be treated

as a unit to perform some operation such as finding out if
the model is void (i.e. it represents at least one product)
or what is the number of product represented by the model.
The step to use atomic sets as the basic unit in the analysis
can be achieved by replacing each feature in the model by
the atomic set which contains it.

The benefit of using atomic sets lies in efficiency. Work-
ing with atomic sets instead of features may reduce the
number of variables to consider and consequently the size
of the problem to solve. As an example, in the FM of Figure
1 the number of variables after constructing atomic sets is
reduced from 20 (features) to 11 (atomic sets).

3. Our Contribution

3.1. Atomic Sets Computation

In this section, we present an algorithm for the construc-
tion of the atomic sets of a given FM. Figure 2 depicts the
pseudocode of the function implementing our algorithm.
The function receives an FM as input and returns a set of
atomic sets as output. Each atomic set is composed by a
name (e.g. ”AS-2”) and the collection of features in the
atomic set. The main part of the work is made by a recur-
sive procedure also presented as part of the figure. This pro-
cedure checks all the subfeatures of the feature received as
input. For each subfeature, if it is mandatory, it is added to
the current atomic set under construction. Otherwise, a new
atomic set including the subfeature is created and added to
the collection of atomic sets. After repeating this process
with all the features in the model, the set of atomic set is
returned.



1 function buildAS(FeatureModelfm)::Collection<AtomicSet>
2 Collection<AtomicSet> atomic sets = new Set<AtomicSet>();
3 Featureroot = fm.getRoot();
4 AtomicSetas = new AtomicSet(”AS-0”);
5 as.addFeature(root);
6 atomic sets.add(as);
7 computeAS(atomic sets, root, as, 0);
8 returnatomic sets;
9 endfunction

10 procedure computeAS(Collection<AtomicSet> atomic sets, Featuref , AtomicSetcurrent set, int set )
11 foreach Featureg in f .getSubfeatures()
12 if (g.getRelationType() == Feature.MANDATORY)
13 current set.addFeature(g);
14 computeAS(atomic sets,g,current set, set);
15 else
16 Stringsetname = ”AS-” + (set+1);
17 AtomicSetnew as = new AtomicSet(setname);
18 new as.addFeature(g);
19 atomic sets.add(new as);
20 computeAS(atomic sets,g,new as,set+1);
21 endif
22 endforeach
23 endprocedure

Figure 2. Algorithm for the computation of atomic sets

3.2. Experimental Results

In order to measure the benefits of implementing atomic
sets we carried out a performance comparison using the
FAMA framework. In particular, we first generated a set of
random FMs with a different number of features and cross-
tree constraints. Then, we performed some operations us-
ing CSP, BDD and SAT-based solvers with and without the
usage of atomic sets. Next, we gave the details about the
experiment and the results.

3.2.1 The Experiments

For the experiments, we generated a number of random
FMs using FAMA. The algorithm for the automated gen-
eration of those models is presented in Appendix A as one
of the contributions of the paper. In particular, we used
four groups of 50 randomly generated FMs. Each group
included FMs with a number of features in a specific range
([50-100),[100-150),[150-200) and [200-300)) in order to
test the performance with different sizes of the problem.
Once all the FMs were generated, we proceeded with the
execution using the FAMA framework. For the execution,
we used three of the solvers integrated in FAMA: JaCoP2

(CSP), JavaBDD3 (BDD) and Sat4j4 (SAT). The set of ex-

2http://jacop.cs.lth.se/
3http://javabdd.sourceforge.net/
4http://www.sat4j.org/

N. of Features N. of instances CT constraints
[50-100) 50 [0%-25%]

[100-150) 50 [0%-25%]
[150-200) 50 [0%-25%]
[200-300] 50 [0%-25%]

Table 1. Experiments

periments was executed twice with each solver, with and
without the usage of atomic sets, in order to compare the im-
provement in the performance. Each FM was executed sev-
eral times increasing the number of cross–tree constraints
from 0 to 5, 10, 15, 20 and 25% of the number of the
features in the FM. Cross-tree constraints were added ran-
domly as well, but checking that the same feature can not
appear in more than one cross–tree constraint and that a fea-
ture can not have a cross–tree constraint with any of its an-
cestors. Once the results were obtained, we worked out av-
erages from the results in order to avoid as much exogenous
interferences as possible. Averages were obtained from all
the FMs in each range with the same percentage of cross–
tree constraints. Table 1 summarizes the characteristics of
the experiments.

For our experiments we performed two operations:i)
finding out if an FM is valid, that is, if it represents at last
one product andii) finding out the total number of products
represented by a given FM. The first one is one of simplest



operation while the second is the hardest one in terms of
performance because it is necessary to work out the total
number of possible combinations. The data extracted from
the tests were:

• Average memory used by the logic representation of
the FM (measured in Kilobytes).

• Average execution time to find one product (measured
in milliseconds).

• Average execution time to obtain the number of prod-
ucts (measured in milliseconds).

• Time to compute the atomic sets (measured in millisec-
onds).

In order to evaluate the implementation, we measured
its performance and effectiveness. We implemented the so-
lution using Java 1.6.004. We ran our tests on a WIN-
DOWS VISTA BUSINESS EDITION machine equipped
with a 2.4Ghz Intel Core 2 microprocessor and 2048 MB
of RAM memory.

3.2.2 The Results

The experimental results revealed a noticeable improve-
ment in the performance of solvers when using atomic sets.
The first evidence was a reduction in the average memory
usage of 4% in JaCoP, 15% in Sat4j and 19% in JavaBDD.
The operation to find one product was performed on aver-
age between 10% (JaCoP and Sat4j) and 20% (JavaBDD)
faster using atomic sets. Similarly, the number of products
of the FMs was computed on average between 5% and 20%
faster using this technique.

The improvement in the performance was better observ-
able with large FMs. As an example, Figure 3 illustrates the
average memory and time used by JavaBDD in the range of
200-300 features. Improvements were especially consider-
able in the experiments with a higher number of cross-tree
constraints. In these cases, experiments using atomic sets
revealed an improvement of up to 25 seconds (28% of im-
provement) on average when finding the number of solu-
tions.

The benefits of using atomic sets were especially notice-
able when we studied the hardest cases in terms of perfor-
mance. An example of this situation is illustrated in Figure
4. This figure presents the time and memory consumed by
JavaBDD in the worst cases of the range of experiments be-
tween 200 and 300 features. In these cases, we found an
improvement of up to 119 MB (in a total of 476) in mem-
ory and 7 minutes (in a total of 27) in the time to find the
number of solutions.

Finally, we found that the time to compute the atomic
sets of FMs was insignificant (0-10 ms) in all the cases.

3.2.3 Discussion

The improvement in time when adopting atomic sets was
not easy to measure in part of the experiments. This was
because many of these were not complex enough and the
time to perform the operations was very low. This is the
reason because we provided range of improvements for the
time and we do not give accurate data.

The available empirical results shows that the memory
usage of BDD solvers can be huge [5]. In fact, it seems to
increases exponentially with the number of cross-tree con-
straints. In this context, our experimental results suggest
that atomic sets could be used as a suitable strategy to ease
the effects of this trend.

Our performance test showed that the usage of atomic-
set may provide a great improvement of the performance
specially when dealing with large FMs. However, we re-
mark that the cost of implementing atomic sets is practi-
cally insignificant and can bring very positive results even
in small specific cases (especially when these are hard to
compute).

Finally, we remark that in this paper we focus on the per-
formance provided by different solvers when implementing
atomic sets. For an empirical comparison of the perfor-
mance provided by the solvers presented in this paper we
refer the reader to [5].

4. Conclusions

In this paper, we set the basis for the usage of atomic sets
as a generic technique for the automated analysis of FMs.
In particular, we first presented an algorithm to construct
the atomic set of a given FMs. Then, we detailed the results
of a performance test measuring the degree of improvement
when using atomic sets with CSP, BDD, and SAT-based so-
lutions currently integrated in the FAMA framework.

The experimental results revealed that the improvement
when using atomic sets can be considerable in both, time
and memory. This improvement was especially important
in large FMs (in the order of hundreds of MB and minutes).
However, we remark that the payoff for implementing this
technique is insignificant and can bring noticeable results
even in small cases, especially if these are hard to compute.

As a result of our performance test, we conclude that the
techniques for the treatment of FMs at the problem level
could help to improve the efficiency notably. Additionally,
we consider that this kind of techniques could be applicable
to the analysis of other kind of variability models.

References

[1] D. Batory. Feature models, grammars, and proposi-
tional formulas. InSoftware Product Lines Confer-



(a) Average memory usage (b) Average time to find the number of products

Figure 3. Average time and memory usage of JavaBDD (range 200-300 features)

(a) Memory usage (b) Time to find the number of products

Figure 4. Time and memory usage of JavaBDD in the worst cases (range 200-300 features)



ence, LNCS 3714, pages 7–20, 2005.

[2] D. Batory, D. Benavides, and A. Ruiz-Cortés. Auto-
mated analysis of feature models: Challenges ahead.
Communications of the ACM, December, 2006.

[3] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Auto-
mated reasoning on feature models.LNCS, Advanced
Information Systems Engineering: 17th International
Conference, CAiSE 2005, 3520:491–503, 2005.

[4] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Se-
gura. A survey on the automated analyses of feature
models. InJornadas de Ingenierı́a del Software y
Bases de Datos (JISBD), 2006.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. A first step towards a framework for the auto-
mated analysis of feature models. InManaging Vari-
ability for Software Product Lines: Working With Vari-
ability Mechanisms, 2006.

[6] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. Using Java CSP solvers in the automated anal-
yses of feature models.LNCS, 4143:389–398, 2006.

[7] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. FAMA: Tooling a framework for the auto-
mated analysis of feature models. InProceeding of
the First International Workshop on Variability Mod-
elling of Software-intensive Systems (VAMOS), pages
129–134, 2007.

[8] K. Czarnecki and P. Kim. Cardinality-based feature
modeling and constraints: A progress report. InPro-
ceedings of the International Workshop on Software
Factories At OOPSLA 2005, 2005.

[9] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura,
and A. Jimenez. Fama framework. InProceedings of
the 12th International Software Product Line Confer-
ence (Tool demonstration), 2008.

[10] W. Zhang, H. Zhao, and H. Mei. A propositional
logic-based method for verification of feature models.
In J. Davies, editor,ICFEM 2004, volume 3308, pages
115–130. Springer–Verlag, 2004.

A Random Feature Model Generation

The random generation of feature models is one of the
capabilities of the FAMA framework. Figure 5 depicts
the pseudocode of the algorithm used for the generation of
those models. In particular, the algorithm takes the follow-
ing parameters as inputs:

w : is the maximum number of child relationships of the
features in the model.

h : is the maximum height of the model. We consider
the height of a feature model as the maximum distance
between the root and any feature without considering
cross–tree constraints.

e : is the maximum number of elements in a set relation-
ship.

d : is the number of cross–tree constraints to be gener-
ated.



1 function GenerateFM(intw,h,e,d)::FeatureModel
2 FeatureModelfm = new FeatureModel();
3 Featureroot = new Feature();
4 fm.setRoot(root);
5 fm.generateTree(w,h,e,root);
6 fm.generateCrossTreeConstraints(d);
7 returnfm;
8 endfunction

9 procedure GenerateTree(intw,h,e, Featureparent)
10 if (h ≥ 1)
11 intnChildren = Random.getInt(w);
12 forach int i in {0..nChildren}
13 RelationTypetype = Random.getRelationType();
14 Featurechild = new Feature();
15 switch(type)
16 case mandatory:
17 createMandatory(parent,child);
18 generateTree(w,h-1,e,child);
19 case optinal:
20 createOptional(parent,child);
21 generateTree(w,h-1,e,child);
22 case cardinality:
23 int card = Random.getInt();
24 createCardinality(parent,child,1,card);
25 generateTree(w,h-1,e,child);
26 case set:
27 intnChildrenSet = Random.getInt(e);
28 int setCard = Random.getInt(nChildrenSet);
29 FeatureGroupgroup = new FeatureGroup(nChildrenSet);
30 createSet(parent,group,1,setCard);
31 foreach Featurenode in group

32 GenerateTree(w,h-1,e,node)
33 endforeach
34 endswitch
35 endforeach
36 endif
37 endprocedure

38 procedure generateCrossTreeConstraints(intd)
39 if (h ≥ 1)
40 int i = 0;
41 while (i < d)
42 Featuref = getFeatureRandomly();
43 Featureg = getFeatureRandomly();
44 if (valid(f ,g))
45 if (Random.getBool == true)
46 generateDepends(f ,g);
47 else
48 generateExcludes(f ,g);
49 endif
50 i++;
51 endif
52 endwhile
53 endif
54 endprocedure

Figure 5. Algorithm for the generation of random feature models


