
0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

1

Metamorphic Testing of RESTful Web APIs
Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés

F

Abstract—Web Application Programming Interfaces (APIs) allow sys-
tems to interact with each other over the network. Modern Web APIs of-
ten adhere to the REST architectural style, being referred to as RESTful
Web APIs. RESTful Web APIs are decomposed into multiple resources
(e.g., a video in the YouTube API) that clients can manipulate through
HTTP interactions. Testing Web APIs is critical but challenging due to
the difficulty to assess the correctness of API responses, i.e., the oracle
problem. Metamorphic testing alleviates the oracle problem by exploiting
relations (so-called metamorphic relations) among multiple executions
of the program under test. In this paper, we present a metamorphic
testing approach for the detection of faults in RESTful Web APIs. We
first propose six abstract relations that capture the shape of many of
the metamorphic relations found in RESTful Web APIs, we call these
Metamorphic Relation Output Patterns (MROPs). Each MROP can then
be instantiated into one or more concrete metamorphic relations. The
approach was evaluated using both automatically seeded and real faults
in six subject Web APIs. Among other results, we identified 60 meta-
morphic relations (instances of the proposed MROPs) in the Web APIs
of Spotify and YouTube. Each metamorphic relation was implemented
using both random and manual test data, running over 4.7K automated
tests. As a result, 11 issues were detected (3 in Spotify and 8 in
YouTube), 10 of them confirmed by the API developers or reproduced
by other users, supporting the effectiveness of the approach.

Index Terms—Metamorphic testing, REST, RESTful Web services,
Web API

1 INTRODUCTION

Web Application Programming Interfaces (APIs) specify how
to access services and data over the network, typically using
Web services [1], [2]. Web APIs are rapidly proliferating as
a key element to foster reusability, integration, and innov-
ation, enabling new consumption models such as mobile
or smart TV apps. Companies such as Facebook, Twitter,
Google, eBay or Netflix receive billions of API calls every
day from thousands of different third-party applications
and devices, which constitutes more than half of their total
traffic [1]. Many companies are also exposing their existing
assets as private APIs, enabling their own developers to
build innovative mobile, social or cloud applications [1], [3].
Web APIs are usually compliant with the REpresentational
State Transfer (REST) architectural style, being referred to
as RESTful Web APIs [4]. RESTful Web APIs comprise of a
set of so-called RESTful Web services, where each service
implements one or more create, read, update, or delete

• S. Segura, José A. Parejo, Javier Troya, and A. Ruiz-Cortés are with the
Dept. of Computer Languages and Systems, Universidad de Sevilla, Spain.
E-mail: sergiosegura@us.es

(CRUD) operations over a resource, e.g., a shopping order
in the eBay API. At the time of writing this paper, the
ProgrammableWeb Web site [5], a popular API repository,
indexes over 5k RESTful Web APIs from multiple domains
such as shopping, finances, social networks, or telephony.

As Web APIs are progressively becoming the cornerstone
of software integration, their validation is getting more
critical. In this context, the fast detection of bugs is of ut-
most importance to increase the quality of internal products
and third-party applications. However, testing Web APIs is
challenging mainly due to the difficulty to assess whether
the output of an API call is correct, i.e., the oracle problem [6]–
[8]. For instance, consider the Web API of the popular music
streaming service Spotify [9]. Suppose a search for albums
with the query “redhouse” returning 21 total matches: Is this
output correct? Do all the albums in the result set contain
the keyword? Are there any albums containing the keyword
not included in the result set? Answering these questions is
difficult, even with small result sets, and often infeasible
when the results are counted by thousands or millions.

Metamorphic testing alleviates the oracle problem by
providing an alternative when the expected output of a test
execution is complex or unknown [10], [11]. Rather than
checking the output of an individual program execution,
metamorphic testing checks whether multiple executions
of the program under test fulfil certain necessary proper-
ties called metamorphic relations. For instance, consider the
following metamorphic relation in Spotify: two searches for
albums with the same query should return the same number of
total results regardless of the size of pagination. Suppose that
a new Spotify search is performed using the exact same
query as before and increasing the maximum number of
results per page from 20 (default value) to 50: This search
returns 27 total albums (6 more matches than in the previous
search), which reveals a bug. This is an example of a real and
reproducible fault detected using the approach presented
in this paper and reported to Spotify. According to Spotify
developers1, it was a regression fault caused by a fix with
undesired side effects.

In this paper, we present a metamorphic testing ap-
proach for the automated detection of faults in RESTful Web
APIs (henceforth also referred to as simply Web APIs). We
observed that Web APIs have very clear semantics, specified
as CRUD operations over resources, and a very consistent
use of parameters for standard operations such as filtering,
ordering and pagination [2], [12]–[14]. This suggests that

1. https://github.com/spotify/web-api/issues/225

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

2

many of the metamorphic relations derived for a Web API,
like the previously identified in Spotify, could be applicable
to other Web APIs. As a result, we introduce the concept
of metamorphic relation output patterns. A Metamorphic
Relation Output Pattern (MROP) defines an abstract output
relation typically identified in Web APIs, regardless of their
application domain. Each MROP is defined in terms of
set operations among test outputs such as equality, union,
subset, or intersection. For each MROP, there may exist nu-
merous input relations satisfying the output relation defined
by the pattern. We show some of those input relations as
examples, remaining the identification of new input rela-
tions open on each Web API under test. MROPs provide
a helpful guide for the identification of metamorphic rela-
tions, broadening the scope of our work beyond a particular
Web API. Based on the notion of MROP, a methodology is
proposed for the application of the approach to any Web API
following the REST architectural pattern. This methodology
is intended to be used as a complement to the existing tools
and state-of-the-art testing methods used by API developers
and API testers, either in-house or in third-party API testing
companies, e.g., API Fortress [15].

The approach was evaluated in several steps. First, we
used the proposed methodology to identify 33 metamorphic
relations in four Web APIs developed by undergraduate
students. All the relations are instances of the proposed
MROPs. Then, we assessed the effectiveness of the identified
relations at revealing 317 automatically seeded faults (i.e.,
mutants) in the APIs under test. As a result, 302 seeded
faults were detected, achieving a mutation score of 95.3%.
Second, we evaluated the approach using real Web APIs and
faults. In particular, we identified 20 metamorphic relations
in the Web API of Spotify [9] and 40 metamorphic relations
in the Web API of YouTube [16]. Each metamorphic relation
was implemented and automatically executed using both
random and manual test data. In total, 469K metamorphic
tests were generated, out of which we selected a subset of
4,720 tests for the evaluation2. As a result, 21 metamorphic
relations were violated, and 11 issues revealed and reported
(3 issues in Spotify and 8 issues in YouTube). To date, 10
of the reported issues have been either confirmed by the
API developers or reproduced by other users supporting
the effectiveness of our approach.

The remainder of this paper is structured as follows. In
Section 2 RESTful Web APIs and metamorphic testing are
introduced. The MROPs proposed are presented in Section
3. Section 4 describes the proposed methodology. The exper-
imental evaluation of our approach is reported in Section 5.
Section 6 discusses the potential threats to the validity of
our contribution. The related work is reviewed in Section 7.
Finally, we summarize our conclusions in Section 8.

2 BACKGROUND

In this section, we present the basics to understand our
approach. We start with a brief introduction to RESTful Web
APIs, and then we describe metamorphic testing.

2. The selection of the tests was made to avoid potential biases caused
by approximated results or performance optimizations not detailed in
the user documentation of the Web APIs under test (c.f. Section 5).

2.1 RESTful Web APIs
The REpresentational State Transfer (REST) is an architectural
style for distributed hypermedia systems like the Web [4].
Web APIs that adhere to the REST architectural constraints
are called RESTful Web APIs. RESTful Web APIs are de-
composed into multiple RESTful Web services, where each
service implements one or more CRUD operations over a
resource. A resource is anything that can be exposed to the
Web such as a video, a photo or a shopping order [17].

Resources are typically identified by a Uniform Resource
Identifier (URI), which makes them addressable and ma-
nipulable using an application protocol, typically HTTP.
An API endpoint is a unique URI that identifies one or
more resources. Most RESTful Web APIs follow a well-
known set of design guidelines [2], [12]–[14] that includes
implementing the standard HTTP methods as follows:

• GET. It is used to retrieve one or more resources.
• POST. It is used to create a resource. If successful, it

returns the newly created resource.
• PUT. It is used to update a resource. If successful, it

returns the updated resource.
• DELETE. It is used to delete a resource.

As an example, the following request gets
information about “The Rolling Stones” in Spotify:
“GET https://api.spotify.com/v1/artists/
22bE4uQ6baNwSHPVcDxLCe”. The URI (i.e., API endpoint)
identifies the artist by means of its Artist Identifier, and the
HTTP method (GET) specifies the operation to perform
over the resource (read). URIs can include parameters to
perform certain operations over resources such as filtering,
ordering, and pagination. Parameters can be included
either as a part of the URI path (such as the Spotify
Artist Identifier appended at the end of the previous
URI) or using standard URI parameters of the form
param=value. For instance, the following request adds a
“like” rating to the YouTube video with id=9kWEk RLAs:
“POST https://www.googleapis.com/youtube/v3/
videos/rate?id=S9kWEk_RLAs&rating=like”3.

Resources can be represented using different formats
such as JSON, XML or XHTML. We focus on JSON in this
paper. The JavaScript Object Notation (JSON) is a lightweight
and human-readable data-interchange format composed of
property-value pairs. Fig. 1 shows an extract of the artist
resource in JSON format obtained as a response to the
Spotify request previously presented. Note that data values
may include objects (delimited with curly brackets), arrays
(delimited with square brackets) and references to other
URIs, enabling navigating from one resource to another.

Web APIs typically provide online documentation de-
scribing how to use the API. This usually includes inform-
ation about the available resources, URIs, HTTP methods,
parameters, data exchange format, HTTP status codes, au-
thentication data and possible errors. Additionally, some
Web APIs include request and response examples or even
a “Try it!” Web interface for clients to call the API from a
Web browser and check the response.

Throughout the rest of the paper, we illustrate and
evaluate our approach using, among others, the Web APIs of

3. API Key parameter omitted.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

3

Figure 1: JSON representation of an artist in Spotify

Spotify and YouTube. Spotify is a music streaming applica-
tion with over 50M paying subscribers as of March 2017, and
over 140M total active users as of June 20174. The Spotify
Web API [9] provides programmatic access to resources
such as artists, albums, tracks, or playlists metadata in
JSON format. YouTube is a video-sharing application owned
by Google with over 1G users and around 300K videos
uploaded daily. The YouTube Data API [16] is mainly used
to programmatically interact with several resources such as
videos, channels, or playlists in JSON format. Both Web
APIs can be used freely but with restrictions such as a
maximum number of API calls per user and day and a
maximum number of calls in a period of time.

2.2 Metamorphic testing
Metamorphic testing provides an alternative to test a program
when the expected output of a test case is unknown or
hard to compare with the actual output [10]. Rather than
checking the output of an individual test, metamorphic
testing checks whether multiple test executions fulfil certain
metamorphic relations. A metamorphic relation is a necessary
property of the intended program’s functionality that relates
two or more input data and their expected outputs [18]. For
instance, consider the mathematical function min(a, b) that
calculates the minimum value of two integers a and b. The
order of the inputs should not influence the output, which
can be expressed as the following metamorphic relation:
min(a, b) = min(b, a). In this metamorphic relation, (a, b)
is called the source input, and (b, a) is called the follow-up
input. Let Pmin be a program implementing the minimum
function. Pmin can be tested against the previous meta-
morphic relation by running some metamorphic tests where
specific input values are used. For instance, we can first run
Pmin(2, 3) and then run Pmin(3, 2) and then check whether
the two outputs are equal. Here, (2, 3) and (3, 2) are called
the source test case and follow-up test case, respectively.
If the outputs of a source test case and its follow–up test
case(s) violate the metamorphic relation, the metamorphic
test is said to have failed, indicating that the program under
test contains a bug.

Formally, a metamorphic relation for a function f is
expressed as a relation among a series of function in-
puts x0, x1, . . . , xn (with n ≥ 1), and their correspond-

4. https://press.spotify.com/es/about/

ing outputs f(x0), f(x1), . . . , f(xn), that is, a relation
R(x0, x1, . . . , xn, f(x0), f(x1), . . . f(xn)) [19]. We refer to x0

as the source input, and to xi (i ∈ [1, n]) as the follow-up
input. For instance, in the min example x0 = (a, b), x1 =
(b, a), f(x0) = min(a, b) and f(x1) = min(b, a). Therefore,
the relation between x0 and x1 could be x0 = rev(x1)
(where rev is a function that reverses the order of items
in an input list), and the relation between f(x0) and f(x1)
would be equality, i.e.:

R = {(x0, x1,minx0,minx1) |
x1 = rev(x0)→ minx0 = minx1}

As a further example, consider testing an online search
engine [20]. Let Count(q) be the number of results returned
for a search query q. Intuitively, the number of returned
results for q should be equal or smaller if sites contain-
ing a word w are excluded. This can be expressed as the
following metamorphic relation: Count(q) ≥ Count(q -w),
where the ‘-’ operator is used to exclude sites including w.
Consider a source test case consisting in a search for the
keyword “metamorphic”, resulting in 3.3K results. Suppose
that a follow-up test case is constructed by searching for the
query “metamorphic -testing” returning 4.2K results: This is
greater than the result for “metamorphic”, and thus violates
the relation, revealing a bug in the system.

Metamorphic relations implicitly define how, given an
existing source test input (q), one has to transform this into
a follow-up test input (q -w), such that both test cases can
be executed and the relation checked on their inputs and
outputs. As a result, metamorphic testing is also considered
an effective test case generation technique. In the search
engine example, for instance, metamorphic testing could be
used together with a random word generator to automat-
ically construct source test cases (e.g., “bright”) and their
respective follow–up test cases (e.g., “bright -tool”) until a
pair that reveals a bug is found, if any such pair exists. This
idea has been used in our work to automatically generate
over 469K metamorphic tests for the Web APIs of Spotify
and YouTube (c.f. Section 5).

Metamorphic testing was introduced as an approach to
reuse existing test cases back in 1998 by Chen et al. [10].
Since then, as reported in a recent survey [11], the literature
on metamorphic testing has flourished and applications of
the technique have been reported in numerous domains
including Web services and applications [18], computer
graphics [21], compilers [22], bioinformatics [23], and cyber-
security [24]. Additionally, there exist evidences of real bugs
being detected by metamorphic testing in real-world tools
such as the search engine Google [18], the compiler GCC
[22], the machine learning system RapidMiner [25] and the
NASA Data Access Toolkit (DAT) [26].

3 METAMORPHIC RELATION OUTPUT PATTERNS

The identification of metamorphic relations is a manual
task that requires creativity and a good knowledge of the
program under test. A common approach to identify meta-
morphic relations is to check the program specification or
user documentation, and consider how the program inputs
can be modified so that they can produce a predictable
change in the output [19]. However, this is a manual process

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

4

that must be repeated from scratch based on the inten-
ded functionality of each program under test, unless the
program addresses a general problem domain where some
metamorphic relations have already been identified, e.g.,
sorting [10].

To ease the burden of identifying metamorphic relations,
in this section we present six Metamorphic Relation Out-
put Patterns (MROPs) that capture the form of common
metamorphic relations found in RESTful Web APIs. Each
MROP describes an abstract output relation typically found
in Web APIs, regardless of their application domain. For
each MROP, there may exist a variety of input relations
satisfying the output relation defined by the pattern. The
input relation may depend on the specific API under test,
which typically includes adding, removing, or changing in-
put parameters and input resources in a certain way. When
combined with appropriate input relations, each MROP
can be instantiated into one or more concrete metamorphic
relations on each API under test. The proposed patterns
have been defined based on the key principles of the REST
architectural design [4] and the guidelines for the design
of RESTful Web APIs reported in the literature [2], [12]–
[14]. More specifically, we assume that the Web API under
test implements CRUD operations (typically using HTTP
methods) using the default semantics described in Section
2.1, e.g., update operations should return the updated re-
source as an output. Also, we assume that the API under
test supports standard operations such as filtering, sorting,
or pagination. The idea of defining abstract relations from
which concrete metamorphic relation instances are derived
has been exploited in previous approaches on metamorphic
testing of search engines [20], [27], machine learning applic-
ations [28], [29] and numerical programs [30].

Building on the definition of metamorphic relation given
in the previous section, let S = f(x0) be the source output,
and Fi = f(xi) the i-th follow-up output. By output we refer
to a set of items, ordered or not, returned by a call to the
Web API under test, e.g., a set of video resources. A MROP
is expressed as a relation among the source and follow-up
outputs: P = (S, F1, F2, . . . , Fn). Hence, test inputs remain
undefined until the pattern is instantiated. More specifically,
a MROP is instantiated by defining the source and follow-up
inputs and how they are related, in a way that it is expected
to produce outputs satisfying the relation defined by the
pattern P. Next, each pattern is introduced and illustrated
using examples from Spotify and YouTube.

3.1 Equivalence

This pattern represents those relations where the source and
follow-up outputs are equivalent. We define two or more
outputs as equivalent if they include the same items although
not necessarily in the same order, i.e., ∀i ∈ [1, n] · S ≡ Fi.
For instance, ordering the results of a query by different
criteria should produce equivalent outputs. Thus, a search
for YouTube videos with the keywords “metamorphic testing”
should return the same videos regardless of the ordering
criteria specified (date, rating, relevance, title, or number of
views).

3.2 Equality

This pattern represents those relations where the source and
follow-up outputs must contain the same items and in the
same order, i.e., ∀i ∈ [1, n] · S = Fi, where S and Fi are
sequences of items. As an example, it should not matter
whether or not default values of the query parameters are
specified. Let us consider a search in YouTube specifying no
order; it should produce exactly the same result as indicat-
ing the default ordering, which is based on their relevance
to the search query (order=relevance). Analogously, a
search in Spotify specifying no page size should produce
the same result as indicating the default maximum number
of results to return (limit=20). Instances of this pattern
can be produced with the default value of each request
parameter.

This pattern can be generalized to represent those meta-
morphic relations where the source output must be equal to
at least one follow-up output, i.e., ∃i ∈ [1, n] · S = Fi. As
an example of this type of relation, consider reordering the
tracks of a playlist in Spotify. The operation receives several
input parameters including the identifier of the playlist to
be updated and several integers indicating how the tracks
will be reordered. The request returns the updated playlist
as an output. Intuitively, the tracks could be reordered in
several steps assuring that the final order is identical to the
original one. Fig. 2 shows an illustrative example with a
playlist containing three tracks. On each test case, the track
in the first position is moved to the last position until the
complete list has been reverted and the test output of the
source test case and third follow-up test case are identical,
i.e., S = F3. Note that this relation can be easily generalized
by considering the total number of tracks in the playlist and
the number of tracks to be reordered at each step.

3.3 Subset

This pattern groups those relations where the follow-up out-
puts should be subsets (or strict subsets) of the source out-
put and subsets among them, i.e., S ⊇ F1 ⊇ F2 ⊇ . . . ⊇ Fn.
This pattern can be instantiated with any parameter filtering
the results of a query. For instance, let us suppose a source
test case consisting in a search for YouTube videos with the
keywords “marathon” and geolocated within 50km from
New York (parameters location and locationRadius).
Next, a follow-up test case is constructed using the same
query and restricting the search to videos within 20km from
New York. Intuitively, the videos returned by the follow-
up test case, within 20km from New York, should be a
subset of those returned in the source test case, within
50km from New York. Note that this relation could be easily
generalized by using different distances. For instance, if we
construct another follow-up test case with the same query
and restricting the search to videos within 5km from New
York, the set of videos retrieved now should be a subset of
those retrieved by the previous follow-up test case and by
the source test case. This pattern is very common in query
operations where most of the parameters are filters. The
YouTube search operation, for instance, provides more than
20 parameters to filter results by language, definition, dur-
ation, publication time, license, caption, or region, among
others.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

5

(a) Source test output (b) Follow-up test output 1 (c) Follow-up test output 2 (d) Follow-up test output 3

Figure 2: Equality metamorphic relation in Spotify

Common query search operators are also a source of this
type of metamorphic relations [20], [27]. As an example,
consider a source test case consisting in a search for Spotify
albums including the keywords “roadhouse OR blues” that
returns all the results that match either “roadhouse” or
“blues”. Next, a follow-up test case is constructed searching
for albums including the keyword “roadhouse”. Intuitively,
the follow-up output should be a subset of the source
output.

3.4 Disjoint
This pattern represents those relations where the intersec-
tion among the source and follow-up outputs should be
empty, i.e., ∀i, j ∈ [1, n] · S ∩ Fi = ∅ ∧ (i 6= j) →
(Fi∩Fj = ∅). This pattern is applicable when query results
can be divided into disjoint partitions, i.e, result sets with
no item in common. For instance, YouTube videos can be
classified according to its dimension in 2D and 3D videos.
Let us suppose a source test case implementing a search
for YouTube 2D videos (parameter videoDimension=2d).
Next, a follow-up test case is constructed using the ex-
act same query and restricting the search to 3D videos
only (videoDimension=3d). Intuitively, the results of both
searches should be disjoint since a video cannot be 2D and
3D at the same time. As a further example, consider a search
for Spotify albums of “michael buble” published in 2012.
Next, suppose another search for albums of the same artist
published in 2014. The results of both searches should be
obviously disjoint since the same album cannot be pub-
lished in two different years. Note that this relation could
be generalized by considering n different years leading to
the creation of a source test case and n − 1 follow-up test
cases.

Search operators may also be used to instantiate this
pattern. As an example, consider a source test case consist-
ing in a search for Spotify artists including the keywords
“michael”. Suppose a follow-up test case is constructed
searching for artists with the query “jackson NOT michael”
to return items that match “jackson” but excludes those that
also contain the keyword “michael”. The output of both test
cases should have no items in common.

3.5 Complete
This pattern includes those relations where the union of the
follow-up outputs should contain the same items as the
source output, i.e., S = F1 ∪ F2 ∪ . . . ∪ Fn. Sometimes it
may be necessary to tighten the relation to detect duplicated
results by also checking that the number of items in the
source output is equal to the number of items in the follow-
up outputs, i.e., |S| =

∑n
i=1 |Fi|. This pattern is typically

applicable when search results can be divided into disjoint
and complete partitions. For instance, YouTube videos are
classified according to its duration in short (less than 4
minutes), medium (between 4 and 20 minutes) and long
videos (longer than 20 minutes). Consider a source test
case consisting in a search for YouTube videos with the
keyword “testing”. Suppose that three follow-up test cases
are constructed by searching for the same query restricting
the search to short, medium, and long videos, respectively
(parameter videoDuration). Intuitively, the union of the
follow-up test outputs (short, medium, and long videos)
should contain the same videos as the source test output,
where no duration filter was specified. Interestingly, this
relation involves three follow-up inputs, unlike most meta-
morphic relations found in the literature where a single
follow-up input is typically used [11].

It is noteworthy that for this pattern to be instantiated
the disjoint pattern must also be applicable, but not the
other way around. For instance, YouTube searches can be
restricted to a particular type of video, movie or episode,
creating disjoint partitions. However, there may be videos
not included in any of those categories and therefore this
pattern could not be applied, i.e., the partitions are disjoint
but not complete.

3.6 Difference

This pattern includes those metamorphic relations where
the source output and the follow-up output should differ
in a specific set of items D. This pattern is formally defined
as F1 \ S = D. This pattern is common in creation and
update operations where the resource that is created or
updated is returned as output (cf. Section 2.1). Note that in
this particular scenario the output is not a set of resources,
but the set of properties name = value that compose the
returned resource. Consider, as an example, the operation to
insert (upload) a video in YouTube. The operation receives
the video to be uploaded and a few metadata properties
(e.g., description) as inputs. The operation returns a JSON
representation of the video with about 180 properties, most
of which are automatically generated such as those related
to video quality, video dimension and video size. Checking
for faulty values in so many properties is an error-prone and
time-consuming task, where metamorphic testing could be
helpful.

Consider the following sample instantiation of this pat-
tern. A source test case is constructed by uploading a ten-
minute-long video to YouTube with the description “ICSE
video”. Next, a follow-up test case is created by uploading a
shorter version of the video with a duration of two minutes
and the description “TSE video”. Intuitively, the output of

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

6

Figure 3: Different abstraction levels in our methodology

both test cases should only differ in the video description
and the properties video duration and video size, remaining
the rest of the properties equal such as those related to video
quality, video dimension, default language and location. In
practice, test outputs usually include several unique values
that will also differ in every call (e.g., video identifier),
but those properties can be simply ignored as explained in
Section 5.2.3.

4 METHODOLOGY

In this section, we describe the proposed methodology
to test a Web API using metamorphic testing. Roughly
speaking, testers must go through different Abstraction
Levels (AL), as illustrated in Fig. 3 using an example from
the Search operation in the YouTube API. MROPs (AL-1)
are the most abstract artefacts; they represent the relation
among the source output and the follow-up output(s). Meta-
morphic relations (AL-2) are instantiated from the patterns
by specifying the source input, follow-up input(s), and their
relationship, in a way that it is expected to produce the
output relation defined by the pattern. Finally, metamorphic
tests (AL-3) instantiate the metamorphic relations by using
specific input values and implementing the corresponding
output assertion. Next, we present the specific steps to test
a RESTful Web API using this methodology.

1) Select the API operation under test, e.g., reorder the
tracks of a playlist in Spotify.

2) Select an input parameter or group of related in-
put parameters of the API operation under test.
For instance, when reordering tracks in Spotify
three input parameters must be provided, namely,

the position of the first track to be reordered
(range_start), the number of tracks to be re-
ordered (range_length), and the position where
the tracks should be inserted (insert_before).

3) Check the input domain of the selected parameters
and their default value. For instance, the parameter
range_length is an integer in the domain [0, n],
where n is the number of tracks in the playlist being
updated. Its default value is 1.

4) For each pattern, try to instantiate concrete
metamorphic relations by analysing how the
selected parameters could be modified so that
their outputs satisfy the relation specified by the
pattern. Unlike conventional metamorphic testing
approaches, where the relation among inputs and
outputs must be identified from scratch, MROPs
simplify the process of identifying metamorphic
relations significantly, by guiding the tester on
the type of output relations typically found in
Web APIs. For example, the following is the
metamorphic relation instantiated from the Equality
pattern depicted in Fig. 2:

Run a source test case that moves one track
(range_length = 1) from the position 0
(range_start = 0) to the last position
(insert_before = n), where n is the number
of tracks in the playlist being updated. Next, run
n follow-up test cases that perform the exact same
operation. The output playlist of the source test case
and the n-th follow-up test case should contain the same
tracks in the same order.

5) Implement one or more metamorphic test for each
metamorphic relation by using concrete input val-
ues, e.g., specific playlists in the previous example.
The generation of metamorphic tests can be auto-
mated by using standard input generators, e.g., a
random word generator. This enables the generation
of a parameterized number of tests.

5 EVALUATION

In this section, we assess the effectiveness of the proposed
methodology and MROPs at revealing failures in RESTful
Web APIs. In particular, we are interested in answering the
following research questions (RQs).

• RQ1: Are the proposed MROPs and methodology
helpful for the identification of metamorphic
relations in Web APIs? We want to study whether
the proposed patterns are representative of the
types of metamorphic relations found in Web APIs,
and whether the proposed methodology eases the
identification of such relations.

• RQ2: Are the identified metamorphic relations
effective at revealing failures in Web APIs? The
capacity of the identified metamorphic relations to
reveal failures is a key point to evaluate the value of
the approach and we plan to answer this question

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

7

using both artificial and real faults.

• RQ3: Is the approach cost-effective? Testing ap-
proaches must not only be effective but also afford-
able. This will be evaluated in terms of the time
and implementation effort needed to generate and
execute the metamorphic tests in the subject Web
APIs.

The rest of the section is structured as follows. Section 5.1
reports the evaluation with four Web APIs developed by
computer science students, using seeded faults. Section 5.2
reports the results of the evaluation with Spotify and You-
Tube. Finally, the answer to the research questions is presen-
ted in Section 5.3.

5.1 Evaluation with artificial bugs
In this section, we study the effectiveness of our approach
using artificial faults. In the following, we present the
subject Web APIs, fault seeding process, testing setup and
results.

5.1.1 Subject Web APIs
We selected four RESTful Web APIs developed by under-
graduate students as a project assignment in the course
on Architecture and Integration of Software Systems at the
University of Seville (henceforth referred to as academic
APIs). All APIs were written in Java using popular third-
party libraries. The left-hand side of Table 1 shows the
number of classes, lines of code (LoC), and number of
creation, read and update operations provided by each API.
Delete operations were not considered in our study since
they accept the trivial oracle of searching for the deleted
item and failing to find it, i.e., it does not suffer the oracle
problem. The Comments API manages comment resources,
composed of a text, a user name, and creation date. Events
is an API for event management, where each event resource
is composed of a starting and finishing date, a description,
localization, and the name of the user who created it. Memes
is an API for managing “memes”, which are images with ad-
ded text created for comedic purposes. The meme resource
is composed of an URL, a weirdness value (calculated by
checking the similarity with images indexed in Google),
and a creation date. Finally, the Travel API combines travel
information from different real sources. Each travel resource
includes a set of flight booking, car sharing and lodging
options.

5.1.2 Identification of metamorphic relations
The right-hand side of Table 1 shows the number of meta-
morphic relations instantiated from each MROP in the sub-
ject Web APIs. As illustrated, we identified between 5 and 14
metamorphic relations on each API, 33 relations in total. All
the relations were identified by studying the documentation
of the subject APIs, aiming to exercise all the operations and
input parameters provided by the API at least once. We may
remark, however, that it was not our intention to identify a
complete set of metamorphic relations, and more relations
could have been identified readily. To keep this paper at
a reasonable size, the metamorphic relations identified are
described in an online appendix [31].

5.1.3 Seeded faults

We introduced artificial faults into the subject Web API
using mutation testing [32], [33]. More specifically, we used
the tool muJava [34] to create many faulty versions (i.e.,
mutants) of the subject Web APIs, where each mutant was
created from the original API by applying a syntactic change
to its source code. Each syntactic change is determined by a
so–called mutation operator. We used all the traditional (also
called “method-level”) mutation operators implemented in
muJava, a total of 15. To keep the number of mutants
manageable, we mutated the main class of each Web API
only, leaving the rest of classes in their original form, e.g.,
data access classes.

The mutation process yielded 418 generated mutants.
Out of these, 28 mutants (6.7%) were identified as semantic-
ally equivalent and were discarded. Equivalent mutants
keep the program’s semantics unchanged and therefore they
cannot be detected by any test. Additionally, we discarded
73 mutants (17.5%) introducing faults in the exception hand-
ling code of the subject APIs, which is out of the scope of our
approach. These bugs accept the trivial oracle of calling the
service with wrong inputs and checking the corresponding
error messages and HTTP error codes, and therefore they do
not suffer the oracle problem. Table 2 (third column) depicts
the final number of mutants used for the evaluation with
each Web API, 317 mutants in total.

5.1.4 Testing setup

Each metamorphic relation was implemented into several
metamorphic tests, where each metamorphic test runs the
source and follow-up test cases with specific input values
and checks the corresponding assertions. Source test cases
were created in two steps. First, we manually inspected
the data repositories of each subject API, and selected a
set of between 1 and 5 random valid values for each input
parameter. Then, we generated combinatorial combinations
of the previous values in those operations receiving more
than one parameter. As a result, we created 71 source test
cases for the Comments API, 104 for the Events API, 54 for
the Memes API, and 58 for the Travel API, yielding a total
of 287 source test cases.

Once the metamorphic tests of each API were generated,
they were executed on the original API to check if they all
passed. This allowed us to identify one bug in the Com-
ments API (descending ordering in query results working
incorrectly) and one bug in the Memes API (storage API
account expired, error not handled). Both faults were fixed
and the mutants generated from scratch. Then, the meta-
morphic tests of each API were executed on each mutant.
If any of the tests failed, the mutant was labelled as killed,
otherwise it was labelled as alive. We found a few surviving
mutants not detected by our tests. After analysing them,
we realized that they could be easily killed by tightening
the metamorphic relations. For instance, we found that in
order to kill some mutants it was necessary to check that a
result set was a strict subset of another result set, rather
than a subset (which is true when both sets are equal).
Similarly, some bugs required to check not only that two
sets contained the same items but also the same number
of them, to detect duplicated items. This led us to refine the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

8

Web API Classes LoC Operations Metamorphic Relation Output Patterns

Create Read Update Equality Equivalence Subset Disjoint Complete Difference Total

Comments 5 438 1 2 1 2 0 2 1 1 2 8
Events 6 594 1 2 1 0 0 12 0 0 2 14
Memes 7 614 1 2 1 1 1 0 1 1 2 6
Travel 8 1,641 0 2 0 1 2 1 0 1 0 5

Total 26 3,287 3 8 3 4 3 15 2 3 6 33

Table 1: Metamorphic relations identified in the academic APIs

patterns Subset and Complete, as presented in Section 3.3 and
Section 3.5, respectively.

We ran the evaluation on an Ubuntu 14.04 machine
equipped with INTEL i7 with 8 cores running at 3.4 Ghz
and 16 GB of RAM.

5.1.5 Testing results

Table 2 shows the results of the evaluation using mutation
testing. For each subject API, the table shows the number
of metamorphic test generated, total number of generated
mutants, killed mutants, alive mutants, and mutation score,
respectively. The mutation score is calculated as the ratio of
killed mutants over the total number of mutants, excluding
equivalent mutants [33]. As illustrated, the mutation score
ranged between 72.7% in the Memes API, and 100% in
the Comments and Events APIs, with an average value
of 95.3%. All the identified metamorphic relations killed at
least one mutant.

Web API Met. tests Mutants

Total Killed Alive Score

Comments 71 81 81 0 100%
Events 104 58 58 0 100%
Memes 54 44 32 12 72.7%
Travel 58 134 131 3 97.8%

Total 287 317 302 15 95.3%

Table 2: Mutation testing results

We identified two types of faults that remained un-
detected. The first of them, which accounts for 8 out
15 alive mutants (53.3%), caused changes in the outputs
that are independent of the input values. In particular,
8 mutants in the Memes API changed a line that af-
fects a random id generator for the created memes. For
instance, line Math.random() * 10 was changed in a
mutant to Math.random() / 10. This mutant changes the
semantics of the program since the assigned ids will not be
the expected ones. However, the change equally affects the
source and follow-up test cases, and so the bug cannot be
detected using metamorphic testing. We may remark that
this is an intrinsic limitation of metamorphic testing, and
not a limitation of the approach itself.

The second type of seeded fault in the surviving
mutants, which affects 7 out of 15 non-killed mutants
(46.6%), made the APIs return, for any input (i.e., both for
the source and follow-up inputs), either an empty set or a
set including all existing items. In this case, the comparison
of the outputs satisfies most of the relations instantiated
from the MROPs. For instance, an empty set is a subset of

another empty set (Subset pattern satisfied). It is noteworthy,
however, that any bug causing an API to always return an
empty set or a set including all items should be trivially
detected by any sensible manual test.

The set of metamorphic tests of each Web API took
between 2 and 4 seconds to be executed in the original
version of the corresponding API.

5.2 Evaluation with real bugs

This section reports the evaluation results with real Web
APIs. In the following, we present the subject Web APIs,
testing setup and results including a list of detected issues.

5.2.1 Subject Web APIs
We evaluated the effectiveness of metamorphic relations
at detecting faults in the Web APIs of Spotify [9] and
YouTube [16]. We selected these APIs due to their world-
wide popularity, available issue tracking systems and good
documentation. In particular, we tested six different API en-
dpoints implementing creation, update and read operations
over videos, playlists, and search resources (see Table 3). We
placed a special emphasis on testing the search capabilities
provided by Spotify and YouTube because they are the read
operations with the largest number of input parameters, and
therefore the ones from which more diverse metamorphic
relations are likely to be derived.

5.2.2 Identification of metamorphic relations
Table 3 depicts the type and number of metamorphic rela-
tions identified. For each Web API, Spotify and YouTube,
the table shows the operations under test and the number
of relations instantiated from each MROP. In total, we
identified 60 metamorphic relations, 20 in Spotify and 40 in
YouTube. Each relation is composed of a source test case and
from one to three follow-up test cases. All the metamorphic
relations were identified by studying the online English
documentation of the APIs and trying to have a represent-
ative number of instances of each MROP. As expected, most
of the metamorphic relations were identified in the search
operations due to the larger variety of input parameters. We
recall that it was not our intention to identify an exhaustive
set of metamorphic relations and, based on our experience,
it would be straightforward to identify more instances of the
proposed patterns. The metamorphic relations identified are
described in an online appendix [31].

5.2.3 Testing setup
As in the evaluation with artificial faults, each metamorphic
relation was implemented into several metamorphic tests,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

9

Web API Operation Metamorphic Relation Output Patterns Total
Equality Equivalence Subset Disjoint Complete Difference

Spotify
Create playlist 0 0 0 0 0 2 2
Reorder playlist 4 0 0 0 0 0 4
Search 1 0 10 2 1 0 14

YouTube
Insert video 0 0 0 0 0 10 10
Search 4 4 6 6 6 0 26
Update video 0 0 0 0 0 4 4

Total 9 4 16 8 7 16 60

Table 3: Metamorphic relations identifed in Spotify and YouTube

where each metamorphic test runs the source and follow-
up test cases and checks whether the target relation is viol-
ated. In those services receiving numbers, strings or dates
as input parameters, source test cases were automatically
generated. In those services receiving videos and playlists as
input parameters, we resorted to manual source test cases.
In total, we report the results of 4,720 metamorphic tests
(4,400 using random source test cases and 320 using manual
source test cases). Several issues were considered during the
implementation of the tests, namely:

• Input strings like search queries were constructed us-
ing one to five random words (single or compound)
from an English dictionary. Linking words such as
“of”, “the” or “a” were excluded. Unfortunately,
we noticed that this procedure rarely returned valid
albums in Spotify searches. To address this issue,
we constructed a custom database of album-related
words as follows. First, we manually selected 100
artists among the top Spotify artists of each decade
from 1960 to 2010. Then, we searched all their albums
in Spotify and split their titles into a total of 1,897
different single words, excluding linking words.

• The data stored by Spotify and YouTube is frequently
updated, which may lead to inconsistencies between
the outputs of the source and follow-up test cases
when performing searches. To address this issue,
when a violation of a metamorphic relation was
detected, we ran the very same metamorphic test
case again, recording the result only if the violation
was repeatable. This very same approach was used
by Zhou et al. in their work on metamorphic testing
of online search engines [18].

• To avoid inaccuracy caused by empty or too large
search result sets (such as results being intentionally
omitted to improve response time), only test cases
returning between 1 and 50 items were used. Excep-
tionally, this threshold was raised to 500 items in two
metamorphic relations (MR-47 and MR-54 in the on-
line appendix [31]), and to 1,000 items in one relation
(MR-19), where the limit of 50 was too restrictive to
get valid results in a reasonable time. For instance, it
was extremely difficult to find random search queries
that return less than 50 YouTube results including
both 2D and 3D videos. Metamorphic tests violating
the constraint in the number of output items were
discarded. A similar strategy was followed by Zhou
et al. [18].

• During some preliminary tests we noticed that You-
Tube searches return duplicated items (see detected
issues in Section 5.2.5). To avoid inaccuracy caused
by this issue, duplicated items were removed from
the results sets before checking each metamorphic
relation.

• When a video is uploaded to YouTube, it takes some
time (typically a few seconds) for it to be fully
processed and all its data to be available. This could
lead to inconsistencies between source and follow-
up test cases not caused by actual faults. To address
this issue, the output videos of source and follow-up
test cases were compared only when the videos were
labelled as processed by YouTube. Note that this was
compatible with executing metamorphic tests twice
when a violation was detected to confirm that the
result was repeatable.

• Metamorphic relations derived from the Difference
pattern check whether the outputs of source and
follow-up test cases differ in a specific set of proper-
ties (cf. Section 3.6). We observed, however, that the
output of insert and update operations may include
up to 15 unique property values that change in every
call, e.g., thumbnails’ paths. Those properties were
ignored when calculating the differences among out-
puts to avoid misleading results.

• Spotify and YouTube allow a limited number of API
calls per user and day, as well as a maximum number
of calls per period of time. Furthermore, testing Web
services is noticeably slower than testing conven-
tional applications due to the remote communication
overhead. To avoid re-executing tests, the testing
process was divided into two steps. First, we ran the
tests recording the complete output of source and
follow-up test cases as JSON files, available online
[31]. Second, the files were loaded and analysed in
detail. This makes our results fully replicable.

For the implementation of the tests we used the Google
APIs Client Library for Java [35], the Spotify Web API library
for Java [36], the Extended Java WordNet library [37] and the
framework JUnit v4 [38].

5.2.4 Testing results
Table 4 summarizes the quantitative results of our evalu-
ation. For each subject Web API and MROP, the table shows
the number of metamorphic relations (total and violated),
number of metamorphic tests and failure rate. Tests revealed

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

10

Spotify YouTube

Met. Relations Failure Rate (%) Met. Relations Failure Rate (%)

MRP Total Violated Met. Tests Min Avg Max Total Violated Met. Tests Min Avg Max

Equality 5 0 180 0 0 0 4 3 400 0 2 3
Equivalence - - - - - - 4 4 400 99 99.50 100
Subset 10 2 1,000 0 4.80 24 6 4 600 0 1.67 4
Disjoint 2 0 200 0 0 0 6 1 600 0 0.16 1
Complete 1 0 100 0 0 0 6 6 600 1 13.17 63
Difference 2 0 40 0 0 0 14 1 600 0 7.14 100

Total 20 2 1,520 0 0.96 24 40 19 3,200 0 5.53 100

Table 4: Summary of results

2 violated metamorphic relations in Spotify (out of 20) and
19 violated metamorphic relations in YouTube (out of 40).
Interestingly, violated metamorphic relations in YouTube
are distributed among the six proposed patterns, which
supports their usefulness. It is also worth noting that 17 out
of the 20 YouTube metamorphic relations instantiated from
the patterns Equality, Equivalence, Subset and Complete were
violated. We observed that these violations were mainly
caused by missing results in YouTube responses, perhaps
to improve response time (specific examples are presented
in the next section). This was unexpected considering the
number of items returned in most searches was less than
50, and that source and follow-up test cases were executed
sequentially and from the same computer. To the best of
our knowledge, the YouTube API documentation does not
mention the possibility of missing results in searches.

The failure rate measures the percentage of metamorphic
tests that revealed a failure on each metamorphic relation.
For each MROP, Table 4 depicts the minimum, maximum
and average failure rates of the metamorphic relations in-
stantiated from the pattern. For instance, the average per-
centage of failed metamorphic tests in the 10 metamorphic
relations derived from the Subset pattern in Spotify was
4.80%, as shown in the sixth column of the “Subset” row.
Failure rates varied among the different patterns, being
especially low in the metamorphic relations derived from
the Equality, Subset and Disjoint patterns in YouTube. This
suggests that running more tests could reveal new issues.
Conversely, the metamorphic relations instantiated from the
Equivalence pattern were trivially violated in 99.5% of the
metamorphic tests.

As previously mentioned, metamorphic tests were gen-
erated iteratively discarding those where the source or
follow-up test cases produced results sets with zero or more
than 50 (exceptionally 500 or 1,000) items. In total, 469,029
metamorphic tests were generated on the search for 4,720
that fulfil the previous constraints. The total execution time
was about 286 hours, although most of the time was spent
on the generation of discarded tests (464,309 in total). The
execution of each metamorphic test took at most a few
seconds.

5.2.5 Detected issues
This section describes the issues detected using our ap-
proach, reported in the issue tracking systems of Spotify
[39] and YouTube [40]. All the issues were detected when
investigating the causes of violations in metamorphic rela-

tions. At the time of writing this paper, most of the issues
are easily reproducible through a browser or the “Try it!”
Web interfaces provided by Spotify and YouTube as a part
of the API documentation. A complete list of the detected
issues is provided as supplemental material, including links
to related or duplicated issues as well as screenshots of how
the problems are reproduced [31]. The following issues have
been detected in YouTube.

Issue 1. Missing results when using ordering parameters.
Results are missing when requesting search results to be
ordered by date, title, rating, or view counts. For instance,
a search for “mistrustfully” returned 46 items. Immedi-
ately after, a new search was performed with the exact
same query requesting the results to be ordered by date
(order=date), returning 4 items. Fig. 4 depicts another
metamorphic test reproducing this issue in the YouTube
Web API interface. A search for “winter pentathlon 1949” re-
turned 15 items (Fig. 4a). Then, a new search was performed
with the same query requesting the results to be ordered by
date, returning an empty result set (Fig. 4b). We reiterate that
these inconsistencies are repeatable, and thus not caused
by dynamic changes in the YouTube database. This issue
was detected by all the metamorphic relations derived from
the Equivalence pattern involving ordering parameters, with
an average failure rate of 99.5%. The issue5 was filed as a
defect by YouTube back in 2013 and it has been voted (i.e.,
starred) by more than 30 users since then (see supplemental
material for a list of duplicated issues [31]). The issue was
labelled as “WontFix”6 by YouTube in July 2016, without
further explanation.

Issue 2. Missing results when using filters. 10 out of the 12
metamorphic relations instantiated from the patterns Subset
and Complete were violated due to missing results either
in the source or the follow-up test cases. For instance, a
source test case was run searching for videos containing the
keyword “equilibrise” in its metadata, returning 49 videos.
Then, a follow-up test case was executed with the same
query and restricting the search to short videos only (less
than 4 minutes), returning 40 videos. It was observed that
8 of the videos found in the follow-up test case, where
the search was restricted to short videos only, were not
found in the source test case, where no video duration filter
was introduced. Conversely, 2 of the short videos found

5. https://code.google.com/p/gdata-issues/issues/detail?id=5173
6. According to Bugzilla [41], the “WontFix” label indicates that “the

problem described is a bug which will never be fixed”, e.g., because it is too
expensive to repair.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

11

(a) Source test case (b) Follow-up test case (empty result set)

Figure 4: Metamorphic test revealing a bug in Youtube

in the source test case were not found in the follow-up
test case, where the search was restricted to short videos
only. This behaviour was observed in filter parameters such
as locationRadius, channelType, videoEmbeddable,
videoDuration and videoType, among others. We re-
ported an issue for each parameter reproducing the problem
(see supplemental material [31]). In October 2016, some
of these issues were labelled as duplicated by YouTube
developers and linked to another issue7 reporting several
acknowledged search-related bugs including, as described
by YouTube developers, “incomplete results - results (under
the 500 results maximum) that should have been returned but
were not”.

Issue 3. Publication time filters return unexpected results.
Searches return items published outside the time range
indicated by the publishedBefore filter parameter. For
example, a source and follow-up test cases were generated
searching for videos with the query “direfully” published
before and after 1st May 2015 respectively. The issue was
revealed when observing that the result sets of both searches
were not disjoint (Disjoint pattern), that is, some videos
were returned in both result sets. For instance, a video
with publication date 25th May 2015 was returned in a
search for videos published before 1st May 2015 (24 days
of difference). This issue8 was first reported in September
2015 and it has been voted by 6 users since then, including
us.
Issue 4. Location filter returns unexpected results. The location
filter returns results outside of the distance range requested.
For instance, a search for videos containing the keyword
“ingest” and geolocated within 100km from New York
(40.7058,-74.2581) returned a video located 212km away
from the target location (42.5722,-73.6985), according to

7. https://code.google.com/p/gdata-issues/issues/detail?id=8698
8. https://code.google.com/p/gdata-issues/issues/detail?id=7650

Google Maps. This unexpected behaviour was observed
while investigating the causes of the violations in the Subset
metamorphic relations involving location parameters (Issue
2). This issue9 was reported in April 2015 and reproduced
in our work.
Issue 5. PublishAt property not editable. It is not possible to
set a value for the property status.publishAt when
updating a video, despite the fact that the documentation
clearly states that the property is editable. This issue was
detected by a Difference metamorphic relation, comparing
the output of two test cases setting different values for
the conflicting property. This issue10 was first reported in
December 2015 and it has been voted by 4 users since then,
including us.

Issue 6. Inaccurate number of total results. The number of
items in search results often deviates from the value of the
JSON property pageInfo.totalResults, which should
contain the approximate number of results in the response.
This issue can be observed in Fig. 4b, where the response
to the search indicates there are 14 results but, in fact,
no item is returned. This was unexpected considering we
restricted most of our tests to searches returning only 50
items as a maximum. In our evaluation, we found deviations
in 26.8% of test cases (including source and follow-up test
cases) being these divergences sometimes substantial. For
instance, a search for YouTube videos of episodes including
the keyword “straightaway” in its metadata returned a
value for the property totalResults of 3,899, whereas the
actual number of items in the result set was only 16. This
behaviour was repeatedly observed on the metamorphic
relations derived from the patterns Equality, Equivalence,
Subset, Disjoint and Complete. To avoid any bias produced
by this issue in our evaluation, we ignored the value of the

9. https://code.google.com/p/gdata-issues/issues/detail?id=7086
10. https://code.google.com/p/gdata-issues/issues/detail?id=7792

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

12

property and iterated on the number of real items in the res-
ults set, a slower and more expensive strategy. This issue11

was acknowledged by YouTube developers in 2014, who in
response updated the API documentation to clarify that the
value of the property is only an approximation. The issue,
voted by 50 users so far, was labelled as “Fixed” in July 2016.
Incidentally, we found that the Spanish version of the API
documentation describes the property totalResults as
“number of total results in the result set” and does not mention
that the value is an approximation. We reported this as a
separated issue12.

Issue 7. Duplicated results. Search results included du-
plicated items in 2% of the test cases, i.e, items with the
same identifier. This percentage increases up to 21.6% in
the metamorphic tests where the number of items in the
result set was limited to 500, instead of 50. Although the
documentation does not explicitly say that the returned
items must be unique, it seems counter intuitive to provide
redundant information to API users. This does not only
consume extra usage quota but it also delegates in the
user the burden of removing duplicates. This unexpected
behaviour was recurrently observed when investigating
violated metamorphic relations from the patterns Equality,
Equivalence, Subset, Disjoint and Complete. This led us to
adapt our implementation to ignore repeated items. This
issue13 was first reported in 2015 and it has been voted by 4
other users since then, including us.

The following issues were detected in Spotify:
Issue 8. Market filter returns unexpected results. The num-

ber of result items is expanded, rather than filtered, when
restricting the search to only artists, albums, and tracks
with content playable in a given market, i.e., country. This
unexpected behaviour was detected by a metamorphic re-
lation derived from the Subset pattern. Fig. 5 illustrates the
issue being reproduced in the Spotify Web API interface: A
search for albums with the query “banana boat” returned
35 items (Fig. 5a). Immediately after, a follow-up test case
was generated searching for albums with the same query
and content playable in Spain (market=ES), returning 45
items, 10 more items than in the previous search (Fig. 5b).
We reported this issue14 in May 2016 and it was labelled as
“bug” shortly after.

Issue 9. Missing results when using AND/NOT search op-
erators. This issue was detected, among others, by the fol-
lowing metamorphic test derived from the Complete pattern:
A source test case searching for albums including “mended”
returned 27 items. Two subsequent follow-up test cases were
then generated searching for albums containing “mended
AND with”, returning 1 item, and “mended NOT with”,
returning 25 items. Unexpectedly, the union of the follow-
up test cases was not complete (27 6= 1 + 25), revealing the
failure. In other words, the search for “mended” returned an
album not found when searching for “mended AND with”
and not found when searching for “mended NOT with”
either. We reported this issue15 to Spotify in July 2016. In
November 2016, Spotify developers indicated that they had

11. https://code.google.com/p/gdata-issues/issues/detail?id=6125
12. https://code.google.com/p/gdata-issues/issues/detail?id=8101
13. https://code.google.com/p/gdata-issues/issues/detail?id=7033
14. https://github.com/spotify/web-api/issues/230
15. https://github.com/spotify/web-api/issues/269

performed several improvements to the search operation
and the issue was no longer reproducible.

The following issues were detected and reported to
Spotify and YouTube during the preparation of our work,
but they were fixed before we could reproduce them in
the evaluation presented in this paper. It is noteworthy,
however, that both issues have been confirmed by Spotify
and YouTube developers, which supports the effectiveness
of our approach.

Issue 10. Missing results on pagination. The number of
items returned in a Spotify search varied along with the
size of pagination. This bug was detected by a metamorphic
relation derived from the Equality pattern. For instance, a
search for albums with the query “redhouse” and a page
size of 20 returned 21 total items (iterating over two pages).
Immediately after, a new search was performed with the
same query and a page size of 30, returning 27 items (6
more items than in the previous search). In practice, this
was a critical bug that made not possible to iterate over the
results of a search reliably. We reported this issue16 in April
2016 and it was fixed and confirmed by Spotify developers
two weeks later with the following message: “We’ve rolled
out a fix which should stabilise this, and I ran your examples
successfully. Thanks for the detailed report.”.

Issue 11. Embeddable property not editable. The embed-
dable property was not editable when uploading a video
to YouTube, which contradicted the API documentation.
Its value was always set to true regardless of the input
value provided by the user. This unexpected behaviour was
detected by a Difference metamorphic relation, comparing
the output of two test cases setting different values for the
conflicting property. This issue17 was filed as a defect by
YouTube in 2013 and voted by 25 users so far. We repro-
duced the problem and reported it in April 2016. The issue’s
status was changed to “Fixed” by YouTube developers in
July 2016.

5.3 Discussion
Based on the evaluation results, the research questions are
answered as follows.

5.3.1 RQ1: Identification of metamorphic relations
In a classical metamorphic testing approach, metamorphic
relations would have been identified from scratch, relying
on the tester’s creativity and knowledge about each API
under test. In contrast, in this paper we propose several
patterns sketching the general form of typical output rela-
tions found in RESTful Web APIs, regardless of the applic-
ation domain. Using these patterns and the proposed meth-
odology, the identification of metamorphic relations was
straightforward, turning the general problem of identifying
metamorphic relations into a much simpler one: deciding,
for each API operation and input parameter, which pattern
or patterns (out of the six proposed) fit best, and instantiat-
ing them. Following this procedure, we easily identified 33
metamorphic relations in the 4 academic Web APIs, and 60
metamorphic relations in the Web APIs of Spotify and You-
Tube. It is worth mentioning that we found a fair number

16. https://github.com/spotify/web-api/issues/225
17. https://code.google.com/p/gdata-issues/issues/detail?id=4861

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

13

(a) Source test case (b) Follow-up test case (market filter applied)

Figure 5: Metamorphic test revealing a bug in Spotify

of instances of all the proposed patterns, which means that
they are representative of the metamorphic relations found
in Web APIs.

As explained in Section 3, each pattern defines a relation
among the outputs of several service invocations, remaining
the input relation undefined until the pattern is instantiated.
We found that this approach is highly generic and intuitive,
avoiding to narrow the scope of each pattern to a few
input relations. For each MROP, Table 5 summarizes the
input relations identified during the evaluation of our work,
indicating the type of CRUD operation where they were
identified. We remark that these represent just a sample of
the types of input relations compatible with the proposed
patterns. It is noteworthy, however, that these input rela-
tions are found in most Web APIs, which supports their
applicability beyond the subject APIs.

Most of the metamorphic relations were identified in
read operations. In particular, 67% (40 out of 60) of the rela-
tions in Spotify and YouTube were identified in the “search”
operation. This was expected since the search operation
was selected for being the read operation with the largest
number of input parameters, and thus the one with a larger
testing space. Also, this is in line with the proportion of read
operations in the Web APIs under test and related APIs at
the time of writing this manuscript: 64% (41 out of 64) in
Spotify [9], 36% (18 out of 50) in YouTube [16], 69% (150 out
of 218) in Flickr [42], and 57% (69 out of 121) in Twitter [43].

We hypothesize that the proposed patterns could also
be helpful to automatically infer metamorphic relations for
a given API. However, the automated discovery of meta-
morphic relations beyond numerical programs is still in an
early stage, and so this remains as a challenge for future
work [29], [30], [44]. Too keep the evaluation affordable,
we did not follow a systematic adequacy coverage criterion
such as testing certain combinations of input parameters
e.g., pairwise testing. Instead, we tried to have a representat-
ive number of instances of each MROP in order to evaluate
their effectiveness. Based on our experience, more relations

Pattern Input relation CRUD

Equivalence Set ordering criterion Read

Equality
Set page size Read
Use default input values Read
Set new ordering for the resource’s items Update

Subset Set one ore more filters Read
Refine the search query Read

Disjoint Set disjoint filtering parameters Read
Perform disjoint search queries Read

Complete Set disjoint and complete filters Read

Difference Update a resource’s property Update
Create resource with a specific property Create

Table 5: Input relations identified in the evaluation

could have been readily identified.

5.3.2 RQ2: Fault-detection effectiveness
The evaluation with seeded faults yielded a mutation score
of 95.3% (302 mutants killed out of 317), plus two real bugs
being detected in the academic APIs under test. This is a
remarkable result considering metamorphic testing can only
alleviate the oracle problem, but not remove it completely.
This supports the effectiveness of our approach in revealing
failures, and its applicability to different RESTful Web APIs.

Regarding the real issues detected, they are relevant
both in qualitative and quantitative terms. Qualitatively,
10 of the issues (out of 11) have been confirmed either by
developers (7 issues) or other users (8 issues), which means
that they are meaningful and have a negative impact on
the user experience. Most of the issues were detected in
query operations since they are predominant in the Web
APIs under test, however, some bugs were also revealed
in creation (Issue #11) and update operations (Issue #5),
supporting the effectiveness of the approach beyond read
operations. The fact that some of the issues were fixed so
quickly also supports their relevancy (Issue #10). Quantitat-
ively, the number of detected issues is notorious considering

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

14

that only a small portion of the subject APIs were tested.
More specifically, we tested three operations in the Spotify
API (out of 64) and three operations in the YouTube API
(out of 50), which represents a coverage of 4.7% and 6%
respectively.

5.3.3 RQ3: Cost of the approach
The generation of mutants and metamorphic tests in the
four academic APIs required an effort of about 0.2 person-
month. Most of the time was invested to work around some
limitations of the mutation tool (e.g., muJava removes all
code annotations in mutated classes), and to implement
code for running mutants in parallel. Regarding the eval-
uation with Spotify and YouTube, the initial setup for the
generation of metamorphic tests required about 0.5 person-
month in order to implement issues such as user authentic-
ation, random input generators, JSON files’ handlers, integ-
ration of third-party libraries, and so on. It is noteworthy,
however, that once everything was in place, the generation
of metamorphic tests was fully automated and new meta-
morphic relations were implemented readily, paying off the
initial cost. Also, based on our experience, much of the
work made to implement metamorphic tests in one Web API
can be reused when testing other APIs, e.g., authentication
code. More importantly, once the metamorphic relations
are identified and implemented, the degree of automation
achieved can be total if source test cases are automatically
generated, e.g., randomly. This includes not only the auto-
mated generation of inputs, but also the generation of their
corresponding output assertions, i.e., oracles.

Regarding the execution of the metamorphic tests in
Spotify and YouTube, it took about 12 days (286 hours) to
generate almost half million test cases for the Web APIs
of Spotify and YouTube. Several factors justified the time
invested. First, testing Web services is noticeably slower
than testing conventional applications due to the inevitable
communication overhead. Second, as discussed in Issue #6,
we noticed that the number of search results indicated in the
outputs of YouTube was unreliable. As a workaround, we
iterated over all the items of each result set to get accurate
results, both in Spotify and YouTube, which added a signi-
ficant time overhead. Last, most of the time was invested
in the generation of tests that were discarded (464,309 out
of 469,029), due to the hard constraints imposed in our
evaluation, e.g., limiting the number of results in searches.
These constraints were imposed to avoid potential biases
caused by approximated results or performance optimiza-
tions not detailed in the user documentation of the Web
APIs under test. Note, however, that these constraints could
be loosen, or totally removed, if the Web APIs were tested
by their own developers or third-party organisations with
access to the specification, a very common scenario. This
was demonstrated in the evaluation with academic APIs,
where the specification and the code were available, and
therefore no constraints were needed: 287 metamorphic tests
were generated and run, without discarding a single test.

6 THREATS TO VALIDITY

The factors that could have influenced our work are sum-
marized in the following internal and external validity
threats.

6.1 Internal validity

Are there factors that might affect the results of this evaluation?
The main internal threat of our work is related to the correct
identification of failures. To mitigate this threat, we carefully
analysed violated metamorphic relations until the failure
was clearly reproduced both programmatically and, when
possible, through the API Web interfaces of the applications
under test. Next, we checked whether the detected issues
had been already reported in the corresponding issue track-
ing system. If so, we added a comment and details about
how to reproduce the problem. If no related issue existed, a
new issue was created. Finally, we were cautious to indicate,
for each issue, whether it shows an inconsistency between
the API behaviour and its documentation (verification fail-
ure) or an unexpected behaviour from the user perspective,
although not strictly contradictory with the documentation
(validation failure).

6.2 External validity

What are the main limitations of the approach? The application
of metamorphic testing requires identifying metamorphic
relations, which is a manual task that demands a good
knowledge of the functionality of the program under test. To
ease the burden, we introduce the concept of metamorphic
relation output pattern to describe abstract output meta-
morphic relations commonly found in Web APIs, regardless
of their application domain. These patterns provide a help-
ful guidance for the identification of metamorphic relations,
unlike standard metamorphic testing applications where the
relations must be constructed from scratch. Besides this, the
mutation testing results revealed a few bugs (7 out of 317)
not detected by the relations instantiated from the patterns,
e.g., bugs causing the operation to return an empty set for
any input. It is noteworthy, however, that those are bugs that
should be trivially detected by any sensible manual test.

To what extent is it possible to generalize the findings? The
proposed patterns were instantiated in four academic Web
APIs and two real Web APIs, Spotify and YouTube, and
therefore they might not completely generalise further. We
remark, however, that the proposed patterns are based on
the principles of the REST architectural style and the stand-
ard practices for the design of effective RESTful Web APIs.
Hence, the patterns should be applicable to any resource-
oriented API, regardless of the type and domain of the
resource. This means, for instance, that we could have as
resources shopping orders (as in the eBay API), invoices
(as in the PayPal API) or recording transcriptions (as in the
Twilio API), among others. It is also noteworthy that the list
of patterns is not complete and thus more patterns could be
introduced when studying new Web APIs. Finally, although
the effectiveness of the approach at detecting failures was
assessed using a significant number of both artificial and
real bugs, the results might not be generalized to other
types of faults. It is remarkable, however, that 11 bugs
were detected in the Web APIs of Spotify and YouTube,
which are mature and commercial products with millions
of users worldwide, which supports the effectiveness of our
approach in real settings.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

15

7 RELATED WORK

In this section, we summarize the pieces of work that are
more closely related to our approach. We divide them into
metamorphic testing of Web services and applications and
general testing of Web services.

7.1 Metamorphic testing
Chan et al. [45] presented a metamorphic testing method-
ology for Service–Oriented Applications (SOA) built upon
traditional Web services using the Web Service Descrip-
tion Language (WSDL). Their method relies on the use of
so-called metamorphic services to encapsulate the services
under test, execute source and follow-up test cases and
check their results. Their work was evaluated on a service-
oriented calculator with seeded faults. Similarly, Sun et al.
[46] proposed to manually derive metamorphic relations
from the WSDL description of Web services. Their technique
automatically generates random source test cases from the
WSDL specification and applies the metamorphic relations.
They presented a tool to partially automate the process,
and evaluated it with three Web services developed by the
authors with seeded faults. In a related project, Castro-
Cabrera and Medina-Bulo [47] presented a metamorphic
testing-based theoretical approach for Web service compos-
itions using the Web Service Business Process Execution
Language (WS-BPEL). They proposed to analyse the XML
description of the service composition to select adequate
metamorphic relations. In contrast with their approaches,
our work focuses on testing RESTful Web services as the
dominant technological trend for software integration. Fur-
thermore, we propose several patterns supporting the tester
on the identification of metamorphic relations. Last, and
more importantly, our approach was evaluated by detecting
real issues in two commercial Web APIs.

In a related set of papers, Zhou et al. [18], [20], [27] used
metamorphic testing for the detection of inconsistencies in
online Web search applications. In their most recent work
[18], the authors performed an extensive empirical study
on the Web search engines Google, Bing, Chinese Bing and
Baidu. Five metamorphic relations were manually identified
and implemented using randomly generated source test
cases. In [20], [27], Zhou et al. first introduced the concept of
“general metamorphic relation” as an abstract metamorphic
relation from which multiple metamorphic relations were
derived. This is in line with the proposed patterns, and
supports the effectiveness of providing abstract relations
to facilitate the identification of metamorphic relations in
a given domain. RESTful Web APIs often provide search
functionalities and thus the metamorphic relations identi-
fied in their approach can also be used to test programmatic
searches in Web APIs (Zhou et al. mentioned the use of
“search APIs” to interact with the search engines [20]).
However, several aspects make our work differ from theirs.
First, their approach addresses the detection of failures in
Web search engines while ours focuses on the detection of
failures in RESTful Web APIs. Second, our approach aims
to test create, read and update operations over resources,
while theirs focuses on testing page retrieval and ranking
in search engines, i.e, read operations only. Last, and more
importantly, we propose six patterns, and an associated

methodology, to ease the identification of metamorphic rela-
tions within the Web API domain. Out of these patterns, we
instantiated 60 different relations in the Web APIs of Spotify
and YouTube, which were effective at detecting real bugs.
Overall, however, we believe that both lines of research are
complementary and strengthen one another supporting the
effectiveness of metamorphic testing at detecting faults in
the Web domain.

Lindvall et al. [26], [48] presented a metamorphic testing
approach to address acceptance testing of NASA’s Data Ac-
cess Toolkit (DAT). DAT is a huge database of telemetry data
collected from different NASA missions, and an advanced
query interface to search and mine the available data.
Metamorphic testing was used by formulating the same
query in different equivalent ways, and asserting that the
resulting datasets are the same. Note that this is equivalent
to the Equality pattern presented in this paper. A RESTful
Web interface was used to interact with the DAT system.
Compared to their work, we propose a richer catalogue of
metamorphic relations exploiting other types of set relations
as subset, disjoint and completeness. More importantly, they
used a RESTful Web API to interact with the system under
test (DAT), whereas in our work the Web API itself is the
system under test.

7.2 Testing Web services

There exist some approaches that have proposed the testing
of RESTful Web services and APIs. Pontes Pinheiro et al. [49]
presented a model-based testing approach to automatically
generate test cases for RESTful Web services. In their ap-
proach, the user needs to define a behavioural model of the
RESTful Web service under test, specified with a protocol
state machine model in terms of preconditions and post-
conditions [50], [51]. The major drawback of this approach
is that the generated test cases are based on the scenario
defined and modelled manually by the user. Chakrabarti
and Kumar presented Test-the-REST [52], an HTTP testing
tool designed for testing RESTful Web services. The input
test case has to be written in a test specification language
based on XML, what may hinder its usability. A major differ-
ence of these approaches with ours is the effort required by
the tester, who needs to deal with domain-specific languages
for defining behavioural models and tests specifications,
whereas this is not needed at all in our approach.

There are some other tools aimed at the testing of REST-
ful Web services, such as REST-assured [53], Postman [54],
HttpMaster [55], vREST [56], soapUI [57] and API Fort-
ress [15]. These tools enable the automated execution of
tests (like JUnit does in Java) but it is still the tester who
has to write the tests and deal with the oracle problem.
In contrast, we propose a metamorphic testing approach to
alleviate the oracle problem in Web APIs. Furthermore, we
showed how metamorphic relations can be combined with
random test data to achieve full test automation, i.e., input
generation and output checking. We believe that integrating
our approach into state-of-the-art tools for testing Web APIs
would encourage testers to use it and we plan to work on
that direction.

There are some surveys that compile several works on
testing service-oriented architectures in general and Web

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

16

services in particular [58], [59]. Among the cited works for
Web services testing, Coyote [60] is an XML-based object-
oriented framework for such purpose, where test scripts are
written in XML. Tsai et al. [61] proposed to extend the WSDL
to include information relative to Web services testing, such
as dependence information. Bai et al. [62] did not propose
to extend WSDL, but they generated Web services test
cases automatically from WSDL specifications. Ma et al. [63]
also proposed the automated test data generation for Web
services based on WSDL specifications. In particular, they
focused their automation on the XML Schema datatypes
found in the WSDL specifications. Differently from these
approaches, focused on testing WSDL-based Web Services,
we address the detection of faults on RESTful Web Services,
as the emerging standard in industry.

8 CONCLUSIONS

In this paper, we presented a metamorphic testing approach
for the detection of faults in RESTful Web APIs. In particular,
we presented six patterns (MROPs) capturing the shape
of typical metamorphic relations found in Web APIs. Each
pattern is defined in terms of set relations among API
responses and can be instantiated into one or more concrete
metamorphic relations on each Web API under test. A meth-
odology is proposed for the identification of metamorphic
relations based on the proposed patterns, broadening the
scope of our contribution beyond a particular Web API. For
the evaluation of our work, we identified 33 metamorphic
relations in four academic Web APIs and 60 metamorphic
relations in the Web APIs of Spotify and YouTube. The
identified relations were implemented using random and
manual test data running thousands of automated meta-
morphic tests. These tests were effective at revealing both,
automatically seeded and real bugs. In particular, 11 issues
were revealed in Spotify and YouTube, most of them con-
firmed, supporting the effectiveness and the value of the
approach in realistic settings.

VERIFIABILITY

For the sake of verifiability, we provide an online ap-
pendix including the source code of the academic Web APIs,
mutants and description of the metamorphic relations [31].
Additionally, the appendix includes the following data from
the evaluation with real APIs: (1) links to the issues re-
ported in the tracking systems of Spotify and YouTube
(including links to related and duplicated issues), (2) list of
metamorphic relations revealing each issue, (3) screenshots
illustrating how each issue is reproduced, and (4) inputs
and outputs of the metamorphic tests used in the evaluation
(JSON and CSV format).

ACKNOWLEDGMENT

We would like to thank Spotify and YouTube developers for
their outstanding work and active support in the resolution
of issues. We would also like to thank the anonymous
reviewers for their helpful comments and suggestions. This
work has been partially supported by the European Com-
mission (FEDER) and Spanish Government under CICYT
project BELI (TIN2015-70560-R), and the Andalusian Gov-
ernment project COPAS (P12-TIC-1867).

REFERENCES

[1] D. Jacobson, G. Brail, and D. Woods, APIs: A Strategy Guide.
O’Reilly Media, Inc., 2011.

[2] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, Inc., 2013.

[3] D. Jacobson and S. Narayanan, “Netflix api :
Top 10 lessons learned,” in Open Source Con-
vention (OSCON), Porland, Oregon, July 2014. [On-
line]. Available: http://www.slideshare.net/danieljacobson/
top-10-lessons-learned-from-the-netflix-api-oscon-2014

[4] R. T. Fielding, “Architectural styles and the design of network-
based software architectures,” Ph.D. dissertation, 2000.

[5] “ProgrammableWeb API Directory,” accessed November 2016.
[Online]. Available: http://www.programmableweb.com/

[6] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” Software Engineering,
IEEE Transactions on, vol. 41, no. 5, pp. 507–525, May 2015.

[7] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively
does metamorphic testing alleviate the oracle problem?” Software
Engineering, IEEE Transactions on, vol. 40, no. 1, pp. 4–22, Jan 2014.

[8] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[9] “Spotify Web API,” accessed November 2016. [Online]. Available:
https://developer.spotify.com/web-api/

[10] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Technical Report
HKUST-CS98-01, Department of Computer Science, The Hong
Kong University of Science and Technology, Tech. Rep., 1998.

[11] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortes, “A survey on
metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, Sept 2016.

[12] M. Masse, REST API Design Rulebook. O’Reilly Media,
2011. [Online]. Available: http://books.google.ch/books?id=
eABpzyTcJNIC

[13] L. Richardson and S. Ruby, Restful Web Services, 1st ed. O’Reilly,
2007.

[14] S. Allamaraju, RESTful Web Services Cookbook. O’Reilly, 2010.
[15] “API FORTRESS,” accessed November 2016. [Online]. Available:

http://apifortress.com
[16] “YouTube Data API v3,” accessed November 2016. [Online].

Available: https://developers.google.com/youtube/v3/
[17] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice:

Hypermedia and Systems Architecture, 1st ed. O’Reilly Media, Inc.,
2010.

[18] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” IEEE
Transactions on Software Engineering, vol. 42, no. 3, pp. 264–284,
March 2016.

[19] T. Y. Chen, P. Poon, and X. Xie, “METRIC: METamorphic Relation
Identification based on the Category-choice framework,” Journal
of Systems and Software, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121215001624

[20] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C.
Kuo, and T. Y. Chen, “Automated functional testing of online
search services,” Software Testing, Verification and Reliability,
vol. 22, no. 4, pp. 221–243, Jun. 2012. [Online]. Available:
http://dx.doi.org/10.1002/stvr.437

[21] W. K. Chan, J. C. F. Ho, and T. H. Tse, “Finding failures from
passed test cases: Improving the pattern classification approach
to the testing of mesh simplification programs,” Software Testing,
Verification and Reliability, vol. 20, no. 2, pp. 89–120, Jun. 2010.
[Online]. Available: http://dx.doi.org/10.1002/stvr.v20:2

[22] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’14. New York, NY, USA: ACM, 2014, pp. 216–226.
[Online]. Available: http://doi.acm.org/10.1145/2594291.2594334

[23] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An innovative
approach for testing bioinformatics programs using metamorphic
testing,” BioMed Central Bioinformatics Journal, vol. 10, no. 1,
p. 24, 2009. [Online]. Available: http://www.biomedcentral.com/
1471-2105/10/24

[24] T. Y. Chen, F.-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and
Z. Q. Zhou, “Metamorphic testing for cybersecurity,” Computer,
vol. 49, no. 6, pp. 48–55, June 2016.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE
Transactions on Software Engineering

17

[25] C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime assertion
checking to automate metamorphic testing in applications without
test oracles,” in Second International Conference on Software Testing
Verification and Validation, ICST 2009, 2009.

[26] M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand, “Metamorphic
model-based testing applied on nasa dat – an experience report,”
in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on, vol. 2, May 2015, pp. 129–138.

[27] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, and T. Y. Chen, “Automated
functional testing of web search engines in the absence of an
oracle,” Department of Computer Science, The University of Hong
Kong, Tech. Rep. TR-2007-06, 2007.

[28] C. Murphy, G. Kaiser, and L. Hu, “Properties of machine learning
applications for use in metamorphic testing,” Department of Com-
puter Science, Columbia University, New York NY, Tech. Rep.,
2008.

[29] F. Su, J. Bell, C. Murphy, and G. Kaiser, “Dynamic inference
of likely metamorphic properties to support differential
testing,” in Proceedings of the 10th International Workshop
on Automation of Software Test, ser. AST ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 55–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2819261.2819279

[30] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting
metamorphic relations for testing scientific software: a machine
learning approach using graph kernels,” Software Testing,
Verification and Reliability, 2015. [Online]. Available: http:
//dx.doi.org/10.1002/stvr.1594

[31] S. Segura, J. Parejo, J. Troya, and A. Ruiz-Cortés, “Automated
metamorphic testing of restful web APIs: Supplemental material,”
December 2016. [Online]. Available: https://gestionproyectos.us.
es/projects/restfulmt/wiki

[32] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints
on test data selection: Help for the practicing programmer,”
Computer, vol. 11, no. 4, pp. 34–41, Apr. 1978. [Online]. Available:
http://dx.doi.org/10.1109/C-M.1978.218136

[33] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, pp. 649–678, Sep. 2011. [Online].
Available: http://dx.doi.org/10.1109/TSE.2010.62

[34] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated
class mutation system,” Software Testing Verification and Reliability,
vol. 15, no. 2, pp. 97–133, Jun. 2005. [Online]. Available:
http://dx.doi.org/10.1002/stvr.v15:2

[35] “Google APIs Client Library for Java,” accessed November
2016. [Online]. Available: https://developers.google.com/
api-client-library/java

[36] “Spotify Web API library for Java,” accessed November
2016. [Online]. Available: https://github.com/thelinmichael/
spotify-web-api-java

[37] “Extended Java WordNet Library,” accessed November 2016.
[Online]. Available: http://extjwnl.sourceforge.net/

[38] “JUnit 4,” accessed November 2016. [Online]. Available:
http://junit.org/junit4/

[39] “Spotify Web API Issue Tracking System,” accessed November
2016. [Online]. Available: https://github.com/spotify/web-api/
issues

[40] “YouTube Data API Issue Tracking System,” accessed
November 2016. [Online]. Available: https://code.google.com/
p/gdata-issues/issues/list?q=label:APi-YouTube

[41] “Bugzilla,” accessed November 2016. [Online]. Available: https:
//bugzilla.mozilla.org

[42] “Flickr API,” accessed July 2017. [Online]. Available: https:
//www.flickr.com/services/api/

[43] “Twitter REST API,” accessed July 2017. [Online]. Available:
https://dev.twitter.com/rest

[44] J. Troya, S. Segura, and A. Ruiz-Cortés, “Automated inference of
likely metamorphic relations for model transformations,” Journal
of Systems and Software, 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121217300870

[45] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung, “A metamorphic
testing approach for online testing of service-oriented software
applications.” International Journal of Web Services Research,
vol. 4, no. 2, pp. 61–81, 2007. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/jwsr/jwsr4.html#ChanCL07

[46] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y.
Chen, “A metamorphic relation-based approach to testing web
services without oracles,” International Journal of Web Services

Research, vol. 9, no. 1, pp. 51–73, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.4018/jwsr.2012010103

[47] C. Castro-Cabrera and I. Medina-Bulo, “Application of
metamorphic testing to a case study in web services
compositions,” in E-Business and Telecommunications, ser.
Communications in Computer and Information Science,
M. Obaidat, J. Sevillano, and J. Filipe, Eds. Springer
Berlin Heidelberg, 2012, vol. 314, pp. 168–181. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35755-8 13

[48] M. Lindvall, D. Ganesan, S. Bjorgvinsson, K. Jonsson, H. S.
Logason, F. Dietrich, and R. E. Wiegand, “Agile metamorphic
model-based testing,” in Proceedings of the 1st International
Workshop on Metamorphic Testing (in conjuction with ICSE), ser.
MET ’16. New York, NY, USA: ACM, 2016, pp. 26–32. [Online].
Available: http://doi.acm.org/10.1145/2896971.2896979

[49] P. V. Pontes Pinheiro, A. Takeshi Endo, and A. Simao, “Model-
based testing of restful web services using uml protocol state
machines,” in 7th Brazilian Workshop on Systematic and Automated
Software Testing, ser. SAST’13, 2013.

[50] I. Porres and I. Rauf, “Modeling behavioral restful web service
interfaces in uml,” in Proc. of the 2011 ACM Symposium on Applied
Computing, ser. SAC ’11. ACM, 2011, pp. 1598–1605.

[51] I. Rauf and I. Porres, “Designing level 3 behavioral restful web
service interfaces,” SIGAPP Appl. Comput. Rev., vol. 11, no. 3, pp.
19–31, 2011.

[52] S. K. Chakrabarti and P. Kumar, “Test-the-rest: An approach to
testing restful web-services,” in Proceedings of the 2009 Computation
World: Future Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, ser. COMPUTATIONWORLD ’09. IEEE Com-
puter Society, 2009, pp. 302–308.

[53] “REST Assured,” accessed November 2016. [Online]. Available:
http://rest-assured.io

[54] “POSTMAN,” accessed November 2016. [Online]. Available:
https://www.getpostman.com

[55] “HttpMaster,” accessed November 2016. [Online]. Available:
http://www.httpmaster.net

[56] “vREST,” accessed November 2016. [Online]. Available: https:
//vrest.io

[57] C. Kankanamge, Web services testing with soapUI. Packt Publishing
Ltd, 2012.

[58] G. Canfora and M. Di Penta, Service-Oriented Architectures Testing:
A Survey. Springer, 2009, pp. 78–105.

[59] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing web services:
A survey,” Tech. Rep., 2010.

[60] W. T. Tsai, R. Paul, W. Song, and Z. Cao, “Coyote: an xml-based
framework for web services testing,” in Proc. 7th IEEE International
Symposium on High Assurance Systems Engineering, 2002, pp. 173–
174.

[61] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang, “Extending wsdl
to facilitate web services testing,” in Proc. 7th IEEE International
Symposium on High Assurance Systems Engineering, 2002, pp. 171–
172.

[62] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “Wsdl-based automatic
test case generation for web services testing,” in IEEE International
Workshop on Service-Oriented System Engineering (SOSE’05), 2005,
pp. 207–212.

[63] C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai, “Wsdl-based automated
test data generation for web service,” in International Conference on
Computer Science and Software Engineering, vol. 2, 2008, pp. 731–737.

