
An architectural discussion on DSPL∗

Carlos Cetina, Vicente Pelechano
Dpto. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera s/n, E-46022, Spain
{ccetina, pele} at dsic dot upv.es

Pablo Trinidad, Antonio Ruiz-Cortés
Dpto. Lenguajes y Sistemas Informticos

Universidad de Sevilla, Spain
{ptrinidad, aruiz} at us dot es

Abstract

Dynamic Software Product Line (DSPL) engineering has
proved itself as an efficient way to deal with run-time prod-
uct adaptation. DSPLs have been successfully applied in
domains such as smart homes, mobile devices or multime-
dia systems. However, existing DSPLs focus their efforts
on highly adaptive products or on autonomic products. In
this paper, we classify DSPLs according to their adapta-
tion mechanisms and we also propose mixed DSPL which
simultaneously address both adaptivity and autonomy. Fi-
nally, we discussed the underlying infrastructure to develop
mixed DSPLs.

1 Introduction

A Software Product Line (SPL) engineering pursues the
objective of producing a set of products that share a com-
mon set of assets in an specific domain. SPL engineering
techniques allows to adapt a product to the customer needs
decreasing its production costs and time to market. A prod-
uct adaptation is performed during the SPL development,
however further adaptations of a delivered product is hard
to be managed.

Increasingly, software needs to dynamically adapt its be-
havior at run-time in response to changing conditions in the
supporting computing infrastructure and in the surround-
ing physical environment [8]. Adaptive software is able to
adapt its properties and resource requirements at run-time
in response to dynamically varying user needs and resource
constraints.

A Dynamic Software Product Line (DSPL) [4] is a SPL
whose products are adaptative systems, i.e. a product might

∗This work was partially supported by the European Commission
(FEDER) and Spanish Government under Web-Factories (TIN2006-
00472) and SESAMO (TIN2007-62894) projects and by the Andalusian
Government under project ISABEL (TIC-2533).

pro actively adapt itself when changes are performed in its
environment.

When a product is produced in a SPL, a feature may be
bound at different times: design time, compilation time,
configuration time, runtime... Intensively using runtime
binding, we would be able to produce reconfigurable prod-
ucts that may change their functionality even when they are
deployed. However, the main difference between DSPL and
SPL is the ability of changing the functionality of a prod-
uct automatedly and without the interaction of users. This
grade of autonomy implies the usage of techniques that pro-
vide the knowledge or reasoning ability to adapt a product
at runtime.

With the emergence of pervasive, mobile and service
oriented computing, dynamics variation in users needs and
available resources is becoming more and more widespread.
For example, a pervasive system such as an smart home is
highly dynamic since new kinds of entities (sensors, actua-
tors, external software systems) can be installed in the sys-
tem at any time. Furthermore, existing entities may fail or
leave the system for a variety of reasons: hardware faults,
OS errors, software bugs, network faults, etc. The dynamic
of these systems makes SPL address the production of adap-
tive products.

In this paper we intend to summarize the DSPL archi-
tectures that have been proposed at date, dividing them in
connected and disconnected DSPL depending on their con-
nectivity and dependence with the DSPL development. We
propose mixed DSPL as an intermediate solution that takes
the benefits of both connected and disconnected DSPL ar-
chitectures, giving some details about its internals.

This paper is structured as follows: In Section 2, the
differences between SPL and DSPL development are re-
marked. Section 3 reviews the state of the art on DSPL ar-
chitectures analyzing them using different aspects. In Sec-
tion 4, we propose mixed DSPL as an intermediate alter-
native between connected and disconnected DSPL, whose
architectural internals are discussed. Lastly, in Section 5,
some conclusions and future work are briefly commented.



2 Context and Scenarios

SPL main objective is producing products while costs
and time-to-market are reduced by an intensive reuse
of commonalities and a suitable variability management.
Products are commonly produced by selecting the features
that are part of a product. To make this decision, features are
selected and/or discarded at different binding times. Those
features thought to be bound at runtime are kept in the final
product even when they may not be used by the final prod-
uct. The product must provide the mechanisms to select
the suitable feature at runtime and optionally reconfigure
the product. After the production, no automated activity is
specified in SPL development to maintain a product in con-
nection with the SPL so it may benefit from feature updates.

On the other hand, DSPL development (see Figure 2)
mainly intends to produce configurable products [1] whose
autonomy allows them to reconfigure themselves and ben-
efit from a constant updating. In a DSPL, a configurable
product(CP) is produced from a product line similarly to
standard SPL. However, the reconfiguration ability implies
the usage of two artifacts to control it: the decision maker
and the reconfigurator. The decision maker is in charge of
capturing all the information in its environment that sug-
gests a change such as external sensors information or even
a user. The analyser must know the whole structure of a
CP so it makes a decision on which features must be acti-
vated and deactivated. The reconfigurator is responsible of
executing the decision by using the standard SPL runtime
binding. A CP may be considered as an extension to tradi-
tional SPL products where there are no bound features but
the decision maker and the reconfigurator and the remaining
features are bound at runtime. As a consequence, new fea-
tures may be added to an existing product or even existing
features may be updated at runtime.

Comparing both, SPL and DSPL development, DSPL
development might be considered as a particular case of
SPL where following properties are added:

• Adaptation to changing requirements and environ-
ment: a product is prepared to response to the so called
adaptation triggers which alert the system to a change
in the environment or conditions the product is work-
ing in. Besides, a user may explicitly ask for a change
in a product configuration. Both cases are analysed for
their consequences and if it is possible, the system is
reconfigured to adapt itself to new situations.

• Autonomic capabilities: a CP is able to make decisions
about the features that are activated and deactivated at
a time from the information obtained from its environ-
ment and whenever an adaptation trigger or an user re-
quest arrives to the decision maker.

• Product Updates: as all the features are bound at run-
time, updating an existing product with new features
or updates is eased

Analyzing the reasons why a CP is reconfigured in the
above context, there are several suitable reconfiguration
scenarios [2]. However, we have mainly distinguish two
kinds of scenarios:

• Involution Scenario: the new configuration of a CP is
performed with the available features, activating or de-
activating them. This scenario happens whenever an
adaptation is triggered from the system.

• Evolution Scenario: the new configuration of a CP im-
plies the usage of a new feature or the update of an
existing one.

The number of involution scenarios is finite, as the po-
tential subproducts of a CP is finite. However, evolution
scenarios are difficult to be previewed from a CP as new
features unknown to the CP may appear.

3 A DSPL Taxonomy

Several approaches for developing CP using DSPLs have
been presented along the published literature. In this work,
we have classified these approaches in two categories, ac-
cording to the way in which product adaptation is consid-
ered. These categories are the following:

• Connected DSPL. The DSPL is in charge of the prod-
uct adaptation.

• Disconnected DSPL. The CP itself is in charge of the
product adaptation.

We describe both connected and disconnected DSPLs
from the SPL perspective and the product perspective. In
the SPL perspective, we study the technical extensions in-
corporated in a SPL to become a DSPL and achieve product
adaptation. This technical side is described using the fol-
lowing criteria:

• Adaptation mechanism. This criteria addresses how
product adaptation is achieve.

• Contact between the SPL and the product. This
criteria addresses information interchange between the
SPL and the product.

• Variability manager. This criteria addresses which
SPL participants need capabilities to manage variabil-
ity.

2



Figure 1. Product Life Cycle in Software Product Lines

Figure 2. Product Life Cycle in Dynamic Software Product Lines

In the product perspective, we study the advantages and
disadvantages obtained as result of incorporating adaptation
in SPL products. The following criteria help us to evaluate
the return of investment on DSPLs.

• Adaptation capabilities. This criteria addresses the
adaptation level achieved by the SPL product.

• Autonomic degree. This criteria addresses how much
products depend on SPL to perform adaptation.

• Computational overload. This criteria addresses how
much computational overload is introduced by the
DSPL approach.

3



Next, we apply these criteria to both connected and dis-
connected DSPLs and then we illustrate how they achieve
product adaptation.

3.1 Connected DSPL

Connected DSPLs stay in touch with products in order to
send them updates. These updates enable products to deal
with context changes. Figure 3 shows the steps to send the
updates from the DSPL to the CPs.

1. The CP senses a relevant change which starts the adap-
tation process. Both changes in the environment and in
the CP itself can trigger the adaptation process.

2. The CP sends information about the change to the SPL.
Optionally, the CP can preprocess the information lo-
cally and then it sends a more specific information to
the SPL.

3. The SPL incorporates the acquired information to the
product requisites and then it calculates a new CP vari-
ant.

(a) If there is no variant that satisfies the product req-
uisites, then the SPL notifies the CF and the adap-
tation process fails.

4. The SPL generates the update for the CP. The update
can be the whole calculated variant or the difference
between the old variant and the new one.

5. The SPL sends the update to the CP.

6. The CP updates itself using the update from the SPL.

According to the criteria presented before, we character-
ize a connected DSPL as follows:

• Adaptation mechanism. The CP gets updates from
the SPL to perform the adaptation.

• Contact between the SPL and the product. It is nec-
essary a bidirectional connection between the DSPL
and the CP. If this connection becomes unavailable
then the adaptation can not be performed.

• Variability manager. Only the SPL is in charge of
manage variability.

• Adaptation capabilities. The more scope address the
SPL, the more adaptable the CP is.

• Autonomic degree. The CP depends on the SPL to
perform the adaptation. However, if the connection is
unavailable, the CP behaves as a classic product.

• Computational overload. The product overload de-
pends of (1) the communication with the SPL and (2)
the online installation of updates.

3.2 Disconnected DSPL

Disconnected DSPLs produce CP which can reconfig-
ure itself to deal with contextual changes. Compared with
connected DSPLs, CP reconfigures itself without any DSPL
contact. CP are augmented with variability knowledge and
quiescent components in order to perform the reconfigura-
tion as Figure 4 shows:

1. The CP senses a relevant change which starts the adap-
tation process. Both changes in the environment and in
the CP itself can trigger the adaptation process.

2. The CP calculates a new configuration to deal with the
sensed change.

(a) If there is no configuration that satisfies the prod-
uct requisites, then the adaptation process fails.

3. The CP reconfigures itself to apply the calculated con-
figuration. The reconfiguration operation implies (1)
start/stop components and (2) establish connections
between them.

According to the criteria presented before, we character-
ize a disconnected DSPL as follows:

• Adaptation mechanism. The CP reconfigures itself
to perform adaptation.

• Contact between the SPL and the product. There is
necessary no connection between the SPL and the CP.
The adaption depends on CP resources only.

• Variability manager. Only the CP is in charge of
manage variability.

• Adaptation capabilities. The more variability knowl-
edge the CP have, the more adaptable the CP is.

• Autonomic degree. The CP have no dependency of
the SPL to perform the adaptation.

• Computational overload. The overload is depends of
(1) the variability analysis and (2) the online reconfig-
uration.

3.3 DSPL State of the Art

Figure 5 shows the methods included in connected and
disconnected categories. They have been ordered according
to year in which they appear in the literature.

According to Figure 5, there are six DSPL that fo-
cus their efforts on developing configurable products. An
overview of these DSPL is presented next:

4



Figure 3. Connected DSPL Overview

Figure 4. Disconnected DSPL Overview

5



Figure 5. Classification of DSPL

• Gomaa. Reconfigurable Product Line UML Based
Environment (RPLUSEE) [3] was proposed by Go-
maa et al. Their main contribution is provisioning soft-
ware dynamic reconfiguration patterns. Depending on
the location of dynamic reconfiguration information,
these patterns are classified into master-slave, central-
ized, client-server and decentralized. This method also
provides reconfiguration Statechart and reconfigura-
tion transaction models for the dynamic reconfigura-
tion. This approach focuses on high-level specifica-
tions of dynamic reconfigurable units; however, it does
not describe techniques and guideline for for recon-
figurable component identification, design and imple-
mentation detail.
Adaptation Trigger. Users specify runtime configura-
tion changes so that executable system is dynamically
changed from the old configuration to the new config-
uration.

• Lemlouma. Lemlouma et al. [7] present Negotia-
tion and Adaption Core architecture for adapting and
customizing content before delivering it to a mo-
bile device. Their strategy takes into account device
preferences and capabilities which are specified us-
ing a device independent model. These models are
queried using the XQuery language and the adaptation
is achieved by means of client repositories and SOAP
services.
Adaptation Trigger. There is a real time evaluation
of the context dimensions. Lemlouma explicitly iden-
tifies the following context dimensions: user prefer-
ences, network speed and current confection protocol.

• Lee. Lee et al. proposed a systematic method to de-
veloping dynamically reconfigurable core assets and a

reconfigurator that monitors and manages product con-
figuration at run-time [6]. The method first analyzes
a product line in terms of features and their binding
time. Then, core assets are developed with the analy-
sis results as key design driver. Finally, the developed
reconfigurator address reconfiguration contexts, recon-
figuration strategies and reconfiguration actions (what
to do to reconfigure).
Adaptation Trigger. The configuration plane is in
charge of detecting contextual changes. The plane
consists of two components: Master Configurator and
Local Configurator. Master Configurator collects in-
formation from Local Configurators and/or external
probes to detect contextual changes. Each Local Con-
figurator monitors local messages within the product.

• Hallsteinsen. The MADAM approach [5] was devel-
oped by Hallsteinsen et al. This approach builds adap-
tive systems as component based systems families with
the variability modeled explicitly as part of the fam-
ily architecture. MADAM uses property annotations
on components to describe their Quality of Service.
For example a Video Streaming component may have
properties such as start up time, jitter and frame drop.
At run-time, the adaptation is performed using these
properties and a utility function for selecting the com-
ponent that best fits the current context.
Adaptation Trigger. The Context Manager is respon-
sible for managing and monitoring a set of contexts
in the system environment relevant for the adaptation.
Context includes execution platform context elements
such as network and memory resources, the environ-
ment context elements such as light and noise, and user
context elements location and stress level.

• White. The Scatter tool [12] was developed by White
et atl. to address efficient online variant selection.
Scatter captures the requirements of the product line
architecture and the resources of a mobile device and
then quickly constructs a custom variant for the device.
This tool also ensures that variant selection is optimal
with regard to a configurable cost function.
Adaptation Trigger. A mobile device discovery ser-
vice obtains the non-functional properties of a devices
such as JVMVersion or Position. This service is imple-
mented using SOAP-based web service and a CORBA
remoting mechanism for remotely communicating de-
vice characterizations as they are discovered.

• Trinidad. Trinidad et al [9] present a process to au-
tomatically build a component model from a feature
model based on the assumption that a feature can be
modeled as a component. This process focuses on
enabling a dynamic SPL to dynamically changing a

6



product by activating or deactivating its features at run-
time.
Adaptation Trigger. One o more users set the require-
ments of the product.

• Cetina. Cetina et al. proposed a DSPL based on
Model Driven Development and Variability Modeling
principles [2]. Variability models are interpreted at
run-time to reconfigure pervasive systems according
to fluctuations in the environment. These model intro-
duce precalculated reconfigurations to speed up adap-
tation in failure scenarios. The approach improves
DSPLs to produce software that adapts itself in an au-
tonomic way.
Adaptation Trigger. Reconfiguration is triggered by
means of resources changes such as a new resource
is installed or a resource becomes unavailable. These
resources are sensors, actuators and external software
services. Reconfiguration is also triggered when users
explicitly enable/disable a product functionality.

Table 1 summarizes the specification techniques of each ap-
proach as well as the underlying infrastructure to support
adaptation.

4 Our proposal: Mixed DSPL

On the one hand, connected DSPLs produce highly
adaptable CP. However, adaptation implies that CPs must
stay connected with their DSPL. On the other hand, discon-
nected DSPL produce autonomic CPs which have and adap-
tation range shorter, but they do not need to stay connected
with a DSPL in order to adapt itself.

To bridge the gap between connected and disconnected
DSPLs, we propose an hybrid approach called mixed
DSPL. Mixed DSPLs produce scenario aware CP. In in-
volution scenarios, CPs behave as in a D-DSPL while, in
evolution scenarios CPs behave as in a C-DSPL. Figure 6
shows the steps performed by mixed CP in order to perform
adaptation.

1. The CP senses a relevant change which starts the adap-
tation process. Both changes in the environment and in
the CP itself can trigger the adaptation process.

2. The CP calculates a new configuration to deal with the
senses change.

(a) If there is no configuration that satisfies the prod-
uct requisites, then the CP delegates the adapta-
tion to the SPL. Therefor, the CP sends informa-
tion about the change to the SPL. Optionally, the
CP can preprocess the information locally and
then it sends a more specific information to the
SPL.

(b) The SPL incorporates the acquired information
to the product requisites and then it calculates a
new CP variant.

i. If there is no variant that satisfies the product
requisites, then the SPL notifies the CF and
the adaptation process fails.

(c) The SPL generates the update for the CP. The up-
date can be the whole calculated variant or the
difference between the old variant and the new
one.

(d) The SPL sends the update to the CP.

(e) The CP updates itself using the update from the
SPL and the adaptation process ends..

3. The CP reconfigures itself to apply the calculated con-
figuration. The reconfiguration operation implies (1)
start/stop assets and (2) establish connection between
them.

According to the criteria presented before, we character-
ize a mixed DSPL as follows:

• Adaptation mechanism. The adaptation mechanism
depends of the dynamic scenario. In involution sce-
narios the CP applies the reconfiguration mechanism,
and in evolution scenarios the CP applies the updates
mechanism.

• Contact between the SPL and the product. The
DSPL-CP connection is not strictly necessary to
achieve some level of adaptation. Although, DSPL-CP
connection is necessary to achieve fully adaptivity.

• Variability manager. Both the DSPL and the CP are
in charge of manage variability.

• Adaptation capabilities. The more scope address the
SPL, the more adaptable the CP is.

• Autonomic degree. Some level of adaptivity is guar-
anteed, even if the DSPL-CP connection is unavail-
able.

• Computational overload. In the worst case, the over-
load is depends of (1) the local variability analysis, (2)
the communication with the SPL and (3) the online in-
stallation of updates.

The duality of mixed DSPLs introduces new challenges
to DSPLs developers. Next sections describe the key infras-
tructure elements of mixed DSPLs.

7



Variability Specification Adaptation Infrastructure
Gomaa UMLS State Charts Reconfiguration Patterns

Lemlouma Device Independent Model SOAP Services
Lee Feature Models with Binding Units Dynamically Reconfigurable Assets

Hallsteinsen UML QoS Profile Model Properties Planning Process
White Requirements and Resources Specification Variant Delivery

Trinidad Feature Model Relationship Components
Cetina Scope, Commonalities and Variability Model OSGI Service

Table 1. DSPL Comparison

Figure 6. Mixed SPL Overview

4.1 Configurable Product Generation

The production of a CP differs a bit from common SPL
configuration, where features are selected or removed to
produce a final product. A CP might be considered as a
partial or staged configuration of a variability model where
three kinds of feature appear:

1. Discarded features: feature that are not deployed in a
CP.

2. Active features: features that are deployed and acti-
vated in a CP.

3. Deactive features: features that are deployed in a CP
but are not activated, however they are available for
reconfiguration.

DSPL use variability models to describe the derivable
CP. To keep the information about the dependencies and re-

lationships among CP features, an specific variability model
may be used. A CP variability model is generated from
the DSPL variability model where discarded features are re-
moved. It is important to check both, the selection and the
resultant CP variability model for containing no errors, such
as mandatory features that have accidentally being removed
or incompatible selections of features.

From a CP point of view, two kinds of features are con-
sidered in variability models: active and deactive features.
Reconfiguration is held on the reconfiguration component
that is in charge of de/activating the features to adapt itself
when adaptation triggers are received.

4.2 Decision Maker

The decision maker is in charge of reacting to the adap-
tation triggers, deciding which features must be activated
or deactivated. The way to make decisions is not fixed and

8



many alternatives may be considered such as rules system
or ad-hoc reasoners that use logic paradigms. The informa-
tion to be taken into account to make decisions is:

• The features available in the CP and their state (acti-
vated or deactivated)

• Dependencies among features.

• Adaptation triggers that inform about an involution
scenario or a needed feature.

• User requests of features activation or deactivation.

Then, a variability model may be used to represent in-
formation relative to features and their relationships, and
the adaptation trigger or user requests inform about a list of
features to be activated or deactivated. Among the decision
maker responsibilities that we have detected we mention:

• Giving a fast response to involution scenarios by
means of precalculated reconfigurations.

• Asking the DSPL for new reconfigurations when an
evolution or involution scenario is performed.

• Giving a response to evolution and involution scenar-
ios whenever DSPL is not available.

• Communicating the reconfigurator for the features to
be activated or deactivated in reconfigurations.

On the DSPL side, its decision maker is conscious of
the whole structure of the DSPL by means of its variabil-
ity model. Moreover, the SPL knows the big picture of the
DSPL, its variability model manages more knowledge than
a CP variability model and commonly pervasive systems are
computationally more limited than other systems. Because
of these two factors, we determine the following responsi-
bilities of the SPL Configurator:

• Calculating the reconfiguration in involution and evo-
lution scenarios and send them to the CP configurators.

• Generating a CP variability model from the SPL vari-
ability model and the selected features.

FAMA Framework [11] is an SPL able to produce cus-
tomized tools to reason about variability models. It uses
different logic paradigms and algorithms to reason and ex-
tract information from variability models to help on deci-
sion making.

Although any solution may be given to implement a de-
cision maker, we propose using FAMA Framework to gen-
erate both general DSPL and CP decision makers. We have
to determine which operations are needed to extract infor-
mation from a variability model and make decisions:

• Producing a CP variability model from the SPL vari-
ability model either when a CP is firstly produced or in
an evolution scenario.

• Calculating involution scenarios by propagating deci-
sions when a feature is de/activated.

• Providing explanations [10] when a reconfiguration is
not possible.

As FAMA Framework is an SPL itself, we may create
specific products that only supports above operations at both
sides. This is important in CPs whose resources are lim-
ited, as some functionality of FAMA Framework is not go-
ing to ever be used. In this case, we are currently working
on developing an specific product for limited CP that we
call FAMA Lite.

4.3 Elaborating a Contingency Plan

Evolution scenarios are predictable and commonly come
from an updating process and may be scheduled. A new CP
is regenerated where existing features are maintained and
new ones are optionally added. The DSPL decision maker
is in charge of deciding about the new CP configuration so
the CP decision maker has no responsibility on this process
but receiving and storing the new active configuration.

However, involution scenarios might arise from unpre-
dictable events such as a device breakdown or an unavail-
able service. In these cases, a the fastest response is needed
to restore an stable state of the CP where functionality is at
least maintained or reduced to a minimum.

The CP reconfigurator must be in charge of determining
the features to be activated or deactivated to take the CP to
a stable state. However, explaining a failure and restoring it
[10] is an NP-problem that in many cases might not produce
a fast response. Failure restoring algorithms may be solved
by using heuristics that return a response that may or may
not be the best response. It will allow to give a response in
a limited time at the risk of reducing the functionality of the
CP more than it is needed due to a non-minimal diagnosis.

As the number of involution scenarios is finite and can
be foreseen, a contingency plan may be built by the DSPL
decision maker so the CP decision maker knows how to act
in these cases, giving an optimum response and restoring
the CP fastly to the state where most of the services are
correctly working.

When an involution scenario happens, the contingency
plan must be regenerated. In order to generate it as fast
as possible, the CP decision maker may ask the DSPL for
producing part of the contingency plan or a complete one.
Whenever DSPL decision maker is not available, the con-
tigency plan may be calculated on CP decision maker idle
times.

9



5 Conclusions and Future Work

In this paper we have presented the state-of-the-art in
DSPLs. We have classified these approaches in Connected
and Disconnected DSPLS according to the CP adaptation
mechanisms. To bridge the gap between connected and dis-
connected DSPLs, we have proposed an hybrid approach
called mixed DSPL. Finally, we have discussed the under-
lying infrastructure to develop Mixed DSPLs.

Our future work aims at improving current decision mak-
ers to support mixed DSPLs. In concrete, we are working
on the FAMA Lite support to deal with (1) three-state fea-
ture models and (2) contingency plans.

Furthermore, new challenges appear in the DSPL con-
text from the automated analysis point of view such as the
three-state variability models handling and determining se-
mantic differences between analysis and runtime variability
models.

Finally, we intend to develop mixed DSPLs to validate
our proposal in a real context, concentrating our effort in
smart houses.

References

[1] Software product-family engineering, 5th international
workshop, pfe 2003, siena, italy, november 4-6, 2003, re-
vised papers. 3014, 2004.

[2] C. Cetina, J. Fons, and V. Pelechano. Applying Software
Product Lines to Build Autonomic Pervasive Systems. Soft-
ware Product Line Conference, 2008. SPLC 2008. 12th In-
ternational, 8-12 Sept. 2008.

[3] H. Gomaa and M. Hussein. Dynamic software reconfigura-
tion in software product families. Software Product-Family
Engineering, pages 435 – 444, 2004.

[4] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dy-
namic software product lines. Computer, 41(4):93–95, April
2008.

[5] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using
product line techniques to build adaptive systems. Software
Product Line Conference, 2006 10th International, pages 10
pp.–, 21-24 Aug. 2006.

[6] J. Lee and K. C. Kang. A feature-oriented approach to devel-
oping dynamically reconfigurable products in product line
engineering. splc, 0:131–140, 2006.

[7] T. Lemlouma and N. Layaida. Context-aware adaptation for
mobile devices. Mobile Data Management, 2004. Proceed-
ings. 2004 IEEE International Conference on, pages 106–
111, 2004.

[8] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng. Compos-
ing adaptive software. Computer, 37(7):56–64, July 2004.

[9] P. Trinidad, , A. Ruiz-Cortés, and J. P. na. Mapping feature
models onto component models to build dynamic software
product lines. International Workshop on Dynamic Software
Product Line, 2007.

[10] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and
M. Toro. Automated error analysis for the agilization of fea-
ture modeling. Journal of Systems and Software, 81(6):883–
896, 2008.

[11] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and
A. Jimenez. Fama framework. In Software Product Line
Conference, 2008. SPLC 2008. 12th International.

[12] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko.
Automating product-line variant selection for mobile de-
vices. Software Product Line Conference, 2007. SPLC 2007.
11th International, pages 129–140, 10-14 Sept. 2007.

10


