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AbstratSoftware produt lines (SPL) and agile methods share the ommon goal of rapidlydeveloping high quality software. Although they follow di�erent approahes to ahieveit, some synergies an be found between them by i) applying agile tehniques to SPLativities so SPL development beomes more agile; and ii) tailoring agile method-ologies to support the development of SPL. Both options require an intensive useof feature models, whih are usually strongly a�eted by hanges on requirements.Changing large�sale feature models as a onsequene of hanges on requirements isa well�known error�prone ativity. Sine one of the objetives of agile methods is arapid response to hanges in requirements, it is essential an automated error analy-sis support in order to make SPL development more agile and to produe error�freefeature models.As a ontribution to �nd the intended synergies, this artile sets the basis to pro-vide an automated support to feature model error analysis by means of a frameworkwhih is organized in three levels: a feature model level, where the problem of errortreatment is desribed; a diagnosis level, where an abstrat solution that relies onReiter's theory of diagnosis is proposed; and an implementation level, where theabstrat solution is implemented by using onstraint satisfation problems (CSP).To show an appliation of our proposal, a real ase study is presented where theFeature�Driven Development (FDD) methodology is adapted to develop an SPL.Current proposals on error analysis are also studied and a omparison among themand our proposal is provided. Lastly, the support of new kinds of errors and di�erentimplementation levels for the proposed framework are proposed as the fous of ourfuture work.Keywords: feature models, agile methods, error analysis, theory of diagnosis, on-straint programmingPreprint submitted to Elsevier September 10, 2007



1 Introdution and MotivationThe so�alled agile methods have arisen to fae up to the problems that tra-ditional, heavyweight software development methodologies have not satisfa-torily solved yet. Agile methods pursue some main goals whih are desribedin the Agile Manifesto (Fowler and Highsmith, 2001), where a number of keyhanges to traditional software development are proposed. For example: fous-ing the e�orts during development in the interation with ustomers throughworking software; ollaborating with ustomers during development instead ofnegotiating ontrats at the beginning of development; adapting software tohanging requirements, et. In other words, the aim of agile methods is pro-duing high�quality software produts in less time and ost than using tra-ditional software development methodologies by reduing unneessary tasksand inreasing produtivity.On the other hand, the software produt line (SPL) approah intend to developa set or family of software produts within a onrete appliation domain.In a SPL, software produts are developed from a set of shared, ommonassets �the ore assets� and a set of produt�spei� assets. The ore�assetsdevelopment proess is known as domain engineering whereas the produt�spei� assets development proess is known as appliation engineering (Pohlet al., 2005).Although both approahes are very di�erent from eah other, they share theaim of reduing development time and ost while quality is not ompromised,even inreased. Our experiene applying both approahes separately has madeus think that is possible to �nd some synergies by sharing some praties andtehniques so that SPL development beomes more agile and agile methodsan adopt an SPL�like orientation.Considering the agilization of SPL development, this artile is foused on pro-esses related to the so�alled feature models, whih are used to desribe theproduts in an SPL and are intensively used in SPL development (see Setion2.1). For example, Czarneki et al. (2005) and Sohos et al. (2004) propose in-ferring the ore arhiteture from feature models; Batory et al. (2004) proposeusing feature�oriented programming (FOP) to implement an SPL deompos-ing the arhiteture into features and automatially deriving produts froma seletion of their features; Benavides et al. (2005) use feature models tosupport deision making during prodution.Email address: {ptrinidad, benavides, amador, aruiz, mtoro}�us.es (P.Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M. Toro).
1 This work has been partially supported by the European Commission (FEDER)and Spanish Government under CICYT projet Web�Fatories (TIN2006�00472). 2



As many proesses in SPL development use feature models, applying someagile priniples to frequent operations on feature models an make SPL devel-opment more agile, espeially during the domain engineering proess in whihlarge�sale feature models must be developed. As Kang et al. (1990) statedin the Feature�Oriented Domain Analysis (FODA) report, an important taskwhen using large�sale feature models e�iently is heking that they on-tain no errors after the introdution of hanges, something that annot beperformed manually. Despite of the need of automati support for error anal-ysis in feature models, there is a lak of proposals that fous on produingerror�free feature models (see Setion 7). Taking all this into onsideration,providing automated support for feature model error analysis an be onsid-ered as needed step toward the agilization of SPL development.The other synergisti approahed taken into onsideration is tailoring an ag-ile methodology to introdue SPL orientation. For that purpose, the agilemethodology that �ts better with the priniples of SPL has been hosen.Williams (2004) ompares 4 agile methodologies (XP, FDD, SCRUM andCrystal) and onludes that FDD is the agile methodology that has the mostthorough analysis and design praties. FDD deomposes the ustomer re-quirements in terms of features to obtain a list of features. An iterative andinremental proess is de�ned to develop one or more features from the fea-tures list and onstantly deliver the software to the ustomer in two�weeksiterations. After eah iteration and depending on the ustomer's feedbak, thelist of features is reviewed. The proposed SPL orientation of FDD is based onthree ommon points:
• SPL and FDD deomposes the software in terms of features.
• The list of features and feature models are evolutionary as they are on-stantly reviewed.
• FDD invest an important e�ort in analysis and design and agility is intro-dued in the two�weeks iterations.Introduing feature models in FDD to support SPL priniples also implies thatwhenever a feature model hanges in an iteration, it must be heked to beerror�free. As mentioned before, this is an error�prone ativity espeially whendealing with large�sale SPLs. Therefore, an automated support for featuremodeling is also needed to adapt FDD to SPL priniples.In onlusion, a �rst step in ombining SPL and agile methods, independentlyfrom the alternative hosen, implies the need of an automated tehnique sup-porting the prodution of error�free feature models.Despite of the demand of the FODA report for an automated support toprodue error�free feature models and years after it was published, this de-mand still remains and has only been partially dealt with. Previous works suh3
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Figure 1. Feature model error treatment frameworkas (Mannion, 2002; von der Massen and Lihter, 2004; Czarneki and Kim,2005; Raatikainen et al., 2005) have partially dealt with deteting errors infeature models. Apart from Batory (2005), few of them have foused on theimportane of produing error�free feature models, inluding the possibilityof providing explanations to the modeler so that errors an be deteted andremoved in an agile way. The work presented in this artile ontributes toautomating the error treatment in feature models by modeling the problemsof deteting and explaining errors and providing operational solutions to bothof them. In this way, we think feature modeling an be agilized, a step towardsSPL agilizing.This artile proposes automating error treatment of feature models using athree�level framework, whih is depited in Figure 1. The feature model level,whih desribes the problem of deteting and explaining errors in feature mod-els, is presented in Setion 3. In Setion 4, the diagnosis level, whih mapsfeature models onto diagnosis models using theory of diagnosis to formallydesribe the problem of deteting and explaining errors, is desribed. In Se-tion 5, the implementation level, whih implements the diagnosis level usingonstraint satisfation problems, a desriptive tehnique that an be solvedusing o��the�shelf solvers, is desribed. Additionally, Setion 2 presents somepreliminaries where feature models are brie�y desribed and some basi on-epts of theory of diagnosis and onstraint satisfation optimization problemare introdued. In Setion 6 we validate our proposal by applying it to a realase study. Setion 7 summarizes the related work on automated treatmentof errors in feature models. Finally, Setion 8 shows some onlusions and thepaths to follow in our future work in error analysis and agile software produtline. 4



2 Preliminaries2.1 Feature ModelsAs brie�y ommented in Setion 1, feature models are a widely used notationto desribe the set of produts in a software produt line in terms of features.In feature models, features are hierarhially linked in a tree�like strutureand are optionally onneted by ross�tree onstraints. An example on howfeature models are depited is shown in Figure 2, where the feature modeldesribes a Home Integration System(HIS) produt line.
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Figure 2. Home Integration System (HIS) feature model diagramAlthough there are many proposals on the type of relationships and theirgraphial representation in feature models (see the work by Shobbens et al.(2007) for a detailed survey), the most usual relationships are the following:Mandatory A hild feature ismandatory when it is required to appear when-ever its parent feature appears. In the example, R10 is a mandatory rela-tionship between ontrol (the parent feature) and temperature (the hildfeature), i.e. whenever a temperature ontrol is present in a produt, theremust be a ontrol system in that produt.Optional A hild feature is said to be optional when it an appear or notwhenever its parent feature appears. In the example, R9 is an optional rela-tionship between ontrol and applianes ontrol, i.e. the applianes on-trol feature an be optionally hosen whenever there is a ontrol system ina produt.Or�relationship A set of hild features have an or�relationship with theirparent feature when one or more hild features an be seleted when theparent feature appears. Relationship R11 in Figure 2 is an or�relationshipwhere whenever servies is seleted, video on demand or internet onne-tion or both must be seleted. 5



Alternative A set of hild features are said to be alternative when only oneof them must be seleted when their parent feature appears. RelationshipR12 is an alternative relation in Figure 2, where adsl, pl or wifi internetonnetions must be seleted but only one of them in a single produt.Requires, Exludes A ross�tree relationship like A requires B means thatin any produt where feature A appears, feature B must also appear. Onthe other hand, a relationship like A exludes B means that both featuresannot appear in the same produt at the same time. In the sample featuremodel, pl annot appear in a produt if light ontrol appears and vieversa.2.2 Theory of DiagnosisThe well�known theory of diagnosis proposed by Reiter (1987) has been widelyused to diagnose systems�espeially eletroni iruits�, i.e. to determinewhih system omponents, if any, make the system behave abnormally.In Reiter's theory of diagnosis, a system is modeled as a pair (SD ,COMPS )where COMPS is the set of system omponents and the system desription(SD) is a set of prediates de�ning the behavioral and strutural models of thesystem. In the behavioral model, the normal behavior of system omponentsis desribed as logial impliations of the negation of their abnormal behavior,denoted as Ab() where  is a system omponent. Obviously, the negation ofan abnormal behavior is onsidered as a normal behavior.As an example inspired by the one developed by de Kleer et al. (1990), let usonsider the two�inverter iruit in Figure 3. An inverter is an digital eletroniomponent that inverts its input, i.e. it outputs 1 when its input is 0 and vieversa. As the reader an imagine, the normal behavior of the iruit in Figure3 is outputting its input sine is a double inversion, i.e. in(I1) = out(I2).Following Reiter's theory of diagnosis, the system omponents an be modeledas COMPS = { I1, I2 }, representing the two inverters. Assuming an inversionfuntion inv : {0, 1} → {0, 1} suh that inv(0) = 1 and inv(1) = 0, thebehavioral and strutural models, i.e. the system desription SD , would bethe following:
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1 1Figure 3. The two�inverters iruit and its normal behavior6



SD = {¬Ab(I1) ⇒ out(I1) = inv(in(I1)), [behavioral model]
¬Ab(I2) ⇒ out(I2) = inv(in(I2)), [behavioral model]out(I1) = in(I2) } [strutural model]In Reiter's theory of diagnosis, in order to diagnose a system a set of ob-servations OBS , expressed as prediates, is needed. For example, a set ofobservations for the two�inverter iruit �denoting an abnormal behavior�ould be { in(I1) = 0, out(I2) = 1 }. In this ontext, a Reiter's diagnosis of

(SD ,COMPS ,OBS ) is de�ned as a minimal set of omponents with abnor-mal behavior, denoted as ∆. In other words, ∆ ⊆ COMPS is a diagnosis of
(SD ,COMPS ,OBS ) if the following set of prediates is onsistent and ∆ isminimal:SD ∪ OBS ∪ { Ab() |  ∈ ∆ } ∪ { ¬Ab() |  ∈ COMPS − ∆ } (1)If the system behaves normally, then ∆ = ∅ and the following set of prediatesis onsistent:SD ∪ OBS ∪ { ¬Ab() |  ∈ COMPS } (2)Following with the two�inverters example and the former example observation,to hek if the system behaves normally, i.e. if ∆ = ∅, the following set ofprediates must be veri�ed to be onsistent:

{ ¬Ab(I1) ⇒ out(I1) = inv(in(I1)), [SD (behavioral model)]
¬Ab(I2) ⇒ out(I2) = inv(in(I2)), [SD (behavioral model)]out(I1) = in(I2), [SD (strutural model)]in(I1) = 0, out(I2) = 1, [OBS]
¬Ab(I1),¬Ab(I2) } [¬Ab() |  ∈ COMPS]In this ase, the previous set is not onsistent. That means that there areomponents in ∆ that makes the system behave abnormally. A naive algorithmto identify the omponents with abnormal behavior is to hek all elements inthe power set of omponents PCOMPS against formula (1) and selet thosewhih are minimal. In the example, PCOMP = { ∅, {I1}, {I2}, {I1, I2} } andtwo diagnoses, ∆1 = {I1} and ∆2 = {I2} make formula (1) onsistent and areminimal. That means that only one of the inverters fails, but not the two ofthem simultaneously.There are many di�erent tehniques to diagnose a system based on Reiter'stheory of diagnosis. In Setion 5 we show how to use onstraint satisfationproblem solvers to diagnose feature models, applying the onepts desribedin this setion. 7



2.3 Constraint Satisfation Optimization Problems
A Constraint Satisfation Problem (CSP) is a delarative paradigm to modeland solve problems using onstraints (Tsang, 1995). A CSP is de�ned as a3�tuple (V ,D ,C ) where V is a set of variables, eah ranging on a �nitedomain from set D , and C is a set of onstraints restriting the values thatthe variables an take simultaneously. A solution to a CSP is an assignment toeah variable of a value from its orresponding domain so that all onstraintsare satis�ed simultaneously. In the ommon usage of CSPs, we may searhfor: i) just one solution, with no preferene, ii) all solutions, iii) an optimalsolution by means of an objetive funtion de�ned in terms of one or morevariables of the problem.Consider for instane, the CSP: ({a, b}, { {0, 1, 2}, {0, 1, 2} }, {a + b < 4})where both variables a and b take value in the domain {0, 1, 2} and are on-strained by {a + b < 4}. The only value assignment that does not satisfya + b < 4 is {a 7→ 2, b 7→ 2}, so there are eight solutions. Nevertheless, if wereplae the onstraint with a + b < 0 then the CSP is not satis�able, i.e. thereis no possible value assignment satisfying the onstraints.In many real�life appliations, we do not want to �nd any solution to aCSP but a good one. The quality of a solution is usually measured by anappliation�dependent funtion alled objetive funtion. In these ases, thegoal is �nding a solution that satis�es all the onstraints and minimize ormaximize the objetive funtion. Suh problems are referred to as ConstraintSatisfation Optimization Problems, that onsist of a CSP (V ,D ,C ) and anoptimization funtion O that maps every solution to a numerial value.In the previous example, suppose that we de�ne a onstraint satisfation op-timization problem where the optimization funtion is O(s) = a, whih max-imizes the value of a. There are two solutions in the original CSP, { {a 7→
2, b 7→ 0}, {a 7→ 2, b 7→ 1} }, that maximizes the value of the objetive fun-tion and are therefore the solutions of the onstraint satisfation optimizationproblem.There is an important amount of researh on algorithms and heuristis to solveonstraint satisfation (optimization) problems, and the set of operationalalternatives is growing, inluding both ommerial and free solvers.8



3 Feature Model Level: Dealing with Errors in Feature ModelsA feature model is omposed by features and relationships among them. Afeature model desribes the produts in a SPL, onsidering produts as sets ofseleted features. Relationships are added to redue the set of produts untilthe SPL is properly desribed.Sometimes, introduing new relationships in a feature model may aidentallyremove some produts so the feature model does not desribe the real SPL. Onthe other hand, the feature model may not be orretly onstrained so someproduts that are not in the SPL are still kept in the feature model. Therefore,feature modeling is an error�prone task where representing the orret SPLin terms of features and relationships is not as easy as it seems.We onsider that an error is an inorret de�nition of relationships that sug-gests that the set of produts desribed by a feature model may not math theSPL it desribes. Although this de�nition ould over many kinds of errors, inthis artile we fous on three kinds that have already been onsidered in thebibliography:Dead features A dead feature is a non�instantiable feature, i.e. a featurethat despite of being de�ned in a feature model, it appears in no produt inthe software produt line. Common ases where dead features are generatedare shown in Figure 4.Full�mandatory features A hild feature in a non-mandatory relationshipis a full�mandatory feature if it has to be instantiated whenever its par-ent feature is, i.e. it is neither an optional nor an alternative feature. Themost ommon ases are shown in Figure 5. Full�mandatory features usuallyappear together with dead features, as an be observed for some ases inFigures 4 and 5.Void feature models A feature model is void if it de�nes no produt at all.
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4 Diagnosis Level: Diagnosing and Explaining ErrorsThe goal of the diagnosis level, as depited in Figure 1, is transforming afeature model into a diagnosis model in order to detet errors and providetheir orresponding explanations. This transformation an be desribed usinga iruit�like representation of feature models, where eah relationship or-responds to a omponent. Every omponent or relationship has one binaryinput per feature and one binary output (see Figure 7). Eah input representsthe presene (1) or absene (0) of a feature whereas eah output representswhether a relationship is satis�ed (1) or not (0). A produt, represented byits seleted features, is an instane of the feature model if all relationships aresatis�ed, i.e. if all outputs are equal to 1.Figure 7 shows the iruit�like representation of the HIS feature model inFigure 2. For example, the omponent representing the relationship R5 hastwo inputs, supervision and fire, representing the orresponding features.If both features are present or absent at the same time in a produt, the
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R5 omponent outputs 1; otherwise it outputs 0, whih orresponds to thesemantis of mandatory relationships (see Setion 2.1).4.1 Transforming a Feature Model into a Diagnosis ModelAs desribed in setion 2.2, COMPS , SD and OBS sets must be de�ned torepresent a feature model as a diagnosis model. In our iruit�like representa-tion of feature models, the relationships are onsidered as the omponents ofthe iruit to be diagnosed. In other words, COMPS = { R1, . . . ,Rn } whereRi represents the Ri relationship in the feature model.To de�ne the SD set, some notation must be previously adopted. AllRi ompo-nents, exept those representing a root relationship, have one parent input andone or more hild inputs (see legend in Figure 7). The expression parent(Ri)denotes the parent input of the Ri omponent and hild(Ri) denotes its hildinput. Whenever a omponent has a variable number of hildren (or and alter-native relationships), the expression hildj (Ri) denotes the j th hild input ofomponent Ri , with 1 ≤ j ≤ m. For all type of omponents, out(Ri) denotestheir output.One the notation is de�ned, the behavioral model of the diagnosis systeman be spei�ed as shown in Figure 8. For the sake of simpliity, all de�nitionshave the form ¬Ab(Ri) ⇒ ( out(Ri) = 1 ⇔ ( behaviour1(Ri) ) ), wherebehaviour1(Ri) is a prediate relating the inputs of the Ri omponent that mustType of Ri BehaviorRoot ¬Ab(Ri ) ⇒ ( out(Ri ) = 1 ⇔ ( hild(Ri) = 1 ) )Mandatory ¬Ab(Ri ) ⇒ ( out(Ri ) = 1 ⇔ ( hild(Ri) = 1 ⇔ parent(Ri) = 1 ) )Optional ¬Ab(Ri ) ⇒ ( out(Ri ) = 1 ⇔ ( hild(Ri) = 1 ⇒ parent(Ri) = 1 ) )Alternative ¬Ab(Ri ) ⇒ ( out(Ri ) = 1 ⇔ (

( parent(Ri) = 1 ∧
∑mj=1 hildj (Ri) = 1 ) ∨

( parent(Ri) = 0 ∧
∑mj=1 hildj (Ri) = 0 ) ) )Or ¬Ab(Ri ) ⇒ ( out(Ri ) = 1 ⇔ (

( parent(Ri) = 1 ∧
∑mj=1 hildj (Ri) ≥ 1 ) ∨

( parent(Ri) = 0 ∧
∑mj=1 hildj (Ri) = 0 ) ) )Requires ¬Ab(Ri ) ⇒ ( out(Ri ) = 1 ⇔ ( parent(Ri) = 1 ⇒ hild(Ri ) = 1 ) )Exludes ¬Ab(Ri ) ⇒ ( out(Ri ) = 1 ⇔ ( parent(Ri) = 1 ⇒ hild(Ri ) = 0 ) )Figure 8. Mapping a feature model onto a diagnosis behavioral model12



hold when its output is 1. There is no need to inlude omponent behaviourwhen their output is 0 in SD beause, sine all possible input and outputvalues are { 0, 1 }, it an be dedued that ¬Ab(Ri) ⇒ ( out(Ri) = 0 ⇔
( ¬behaviour1(Ri) ) ).To omplete the de�nition of SD , the strutural model that desribes howfeature signals and omponent inputs bind must be de�ned. As an example,the strutural model orresponding to the iruit in Figure 7 is shown in Figure9. hild(R1) = HIS [strutural model℄parent(R2) = HIShild(R2) = supervisionparent(R5) = supervisionhild(R6) = fire

· · ·

¬Ab(R1) ⇒ ( out(R1) = 1 ⇔ ( hild(R1) = 1 ) ) [behavioral model℄
¬Ab(R2) ⇒ ( out(R2) = 1 ⇔ ( parent(R2) = 1 ⇔ hild(R2) = 1 ) )

¬Ab(R3) ⇒ ( out(R3) = 1 ⇔ ( parent(R3) = 1 ⇔ hild(R3) = 1 ) )

· · ·Figure 9. Diagnosis system desription orresponding to Figure 74.2 Diagnosing a Feature ModelThe third element in a diagnosis model is the set of observations. Diagnosinga system relies on onsisteny heking, i.e. deteting ontraditions betweenthe system desription and a given set of observations assuming that all om-ponents are behaving normally. In the ase of diagnosing feature models, weassume that all relationships are satis�ed, i.e. ∀ni=1
out(Ri) = 1, and foringone or more features to be present or absent, as desribed in the followingsetions.4.2.1 Diagnosing Dead FeaturesA dead feature is a feature that does not appear in any produt. In other words,if ∀ni=1

out(Ri) = 1, that feature annot be present in any input. By translatingthis onept into a diagnosis model, we an a�rm that if the following set of13



prediates is not onsistent, then fdead is a dead feature:SD ∪ { ∀ni=1
out(Ri) = 1, fdead = 1 } ∪ { ¬Ab(Ri) | Ri ∈ COMPS }Applying the theory of diagnosis we may determine all possible diagnoses

{∆1, · · · , ∆k} that make fdead be a dead feature. Eah ∆i is a subset of om-ponents, i.e. relationships in the feature model, that makes the following setof prediates onsistent:SD ∪ { ∀ni=1
out(Ri) = 1, fdead = 1 }

∪ { Ab(Ri) | Ri ∈ ∆i }
∪ { ¬Ab(Ri) | Ri ∈ COMPS − ∆i }In the HIS sample feature model, the pl feature is a dead feature beausethe observation OBS = {∀ni=1

out(Ri) = 1, pl = 1} is not onsistent withthe system desription assuming all omponents are behaving normally. Thereason is that the pl feature is inompatible with the light ontrol feature,whih is a mandatory one. This situation is re�eted in the set of diagnosesfor that observation, ∆1 = {R3}, ∆2 = {R8} and ∆3 = {R13}, whih indiatesthat relationships R3, R8 and R13 are responsible of making pl a dead feature.If R3 or R8 were turned into optional relationships or R13 were turned into arequires relationship or removed, pl would beome a live feature.4.2.2 Diagnosing Full�Mandatory FeaturesA full�mandatory feature is a feature that must be present in a produt when-ever its parent feature is, despite of being a hild feature in a non�mandatoryrelationship, i.e. optional, or�relationship or alternative. Following a similarrationale than for diagnosing dead features, it means that if Ri is a non�mandatory relationship, there annot be any produt in whih parent(Ri) = 1and hildj (Ri) = 0, being hildj (Ri) the hild input of Ri bound to the featureto be heked as full�mandatory. In diagnosis terms, if the following set ofprediates is not onsistent:SD ∪ { ∀ni=1
out(Ri) = 1, parent(Ri) = 1, hildj (Ri) = 0 }

∪ { ¬Ab(Ri) | Ri ∈ COMPS }then the feature bound to hildj (Ri) is a full�mandatory feature. The expla-nations for this kind of error follow the same reasoning as for dead features,i.e. determining the ∆i diagnoses. 14



4.2.3 Diagnosing Void Feature ModelsA feature model is void if there not exist any produt satisfying all its relation-ships, i.e. if it does not desribe any produt at all. This situation happenswhen the root feature is itself a dead feature, so it an be diagnosed fol-lowing the dead features diagnosis rationale, i.e. if OBS = {∀ni=1
out(Ri) =

1, hild(Rroot) = 1}makes the system not onsistent, the orresponding modelis a void feature model.For the rest of the artile, void feature models will be onsidered as a partiularase of dead features and no speial treatment will be desribed.5 Implementation Level: Modeling Diagnosis Problem as a CSPOne of the main advantages of de�ning error detetion and explanation interms of theory of diagnosis is having the problem desribed in an implemen-tation�independent way. In this work, we propose an implementation based ononstraint programming, however any other implementation ould be proposedrelying on the previous diagnosis level.Our proposal is inspired by two main soures: on the one hand, Benavideset al. (2005) proposed a diret mapping from a feature model onto a CSPto extrat information about them; on the other hand, Fattah and Dehter(1995) proposed a general transformation from diagnosis problems into CSPs.5.1 Transforming a Diagnosis Model into a CSPThe �rst step to desribe a CSP is determining the set of variables (V ) andtheir domains (D). In our ase, we distinguish two kinds of variables de�nedover domain {0, 1}: feature variables, VF = {F1, · · · ,Fm}, orresponding tothe features variables in the strutural model of the diagnosis system; and ab-normality variables, VAb = {Ab1, · · · ,Abn}, orresponding to the abnormalityindiators in the behavioral model of the diagnosis system.Notie that there are no variables orresponding to the outputs of the ompo-nents representing the relationships in the feature models. Sine out(Ri) = 1is a ondition present in all the observations required for diagnosing a featuremodel, it an be assumed that it always holds and therefore simplify the be-havioral model de�nitions from ¬Ab(Ri) ⇒ (out(Ri) = 1 ⇔ behaviour(Ri) )into ¬Ab(Ri) ⇒ behaviour(Ri) and their orresponding onstraints in a simi-lar manner (see Figure 10). 15



Figure 10. Transforming diagnosis model in Figure 9 into a CSPThe seond step is de�ning the onstraints of the CSP. For that purpose, astraightforward transformation from the strutural and behavioral model ofthe diagnosis system into a set of onstraints is performed, as depited inFigure 10 using Optimization Programming Language (OPL), a widely usedlanguage to represent onstraint programming problems (Hentenryk, 1999).Notie that prediates of the form ¬Ab(Ri) are translated into a ondition onthe orresponding abnormality variable of the form Abi = 0 and that parentand hild expressions are substituted by the orresponding feature variable inthe strutural model of the diagnosis system.As previously mentioned in Setion 2.3, a solution to a CSP is an assignmentof domain values to the variables that makes all the onstraints hold. Takinginto aount that a valid produt must satisfy all the relationships in a featuremodel, the derived CSP an be used to determine the set of valid produtsde�ned by a feature model if the values of abnormality variables are all setto zero in the onstraints set, i.e. {Abj = 0 | Abj ∈ VAb}. All the solutions tothe resulting CSP would be assignments to the feature variables Fi , i.e. validprodut on�gurations in whih the assignment Fi 7→ 1 means Fi is presentin a produt on�guration whereas Fi 7→ 0 means that Fi is absent.5.2 Diagnosing a Feature ModelThe key element for diagnosing a system is the set of observations. As pre-viously desribed in Setion 4.2, in order to diagnose a feature model, allrelationships are assumed to be satis�ed, ∀ni=1
out(Ri) = 1, and one or morefeatures are fored to be present or absent depending on the kind of error tobe diagnosed.When the diagnosis system is transformed into a CSP, observations beomeonditions of the form Fi = 0 or Fi = 1 that are added to the set of on-straints, and onsisteny heking beomes satis�ability heking. In the next16



setions the additional onstraints derived for eah kind of error based on theobservations proposed in Setion 4.2 are desribed.5.2.1 Deteting Dead FeaturesAs desribed in Setion 4.2.1, in order to diagnose if a feature fdead is a deadfeature in a feature model, the following set of prediates must be heked foronsisteny:SD ∪ { ∀ni=1
out(Ri) = 1, fdead = 1 } ∪ { ¬Ab(Ri) | Ri ∈ COMPS }Transforming this into a CSP implies that the following onditions must beadded to the set of onstraints of the CSP derived from the diagnosis model:

{Abj = 0 | Abj ∈ VAb} ∪ {Fdead = 1}. The onsisteny heking is then re-plaed by a satis�ability heking, i.e. if the augmented CSP is not satis�able,fdead is a dead feature.5.2.2 Deteting Full�mandatory FeaturesIn the ase of full�mandatory features, the transformation of the diagnosissystem into a CSP implies that the following set of onditions must be addedto the set of onstraints of the derived CSP: {Abj = 0 | Abj ∈ VAb} ∪ {Ffm =
0} ∪ {Fp = 0}, where Ffm is the full�mandatory feature and Fp it is itsparent feature. If the augmented CSP is not satis�able, Ffm is a full�mandatoryfeature.5.3 Explaining errorsOne the errors have been deteted, their auses must be determined, i.e. whihare the relationships generating the errors. In the diagnosis level, a diagnosisis a minimal set of relationships that behave abnormally and that explains theerrors in the feature model. Transforming this into a CSP, a diagnosis ∆ is aminimal set of abnormality variables ∆ ⊆ VAb suh that {Abk 7→ 1 | Abk ∈ ∆}is in the set of solutions of the CSP. In other words, not all the solutions areinteresting but only those minimizing the number of failing relationships, i.e.the number of abnormality variables taking value 1. As desribed in Setion2.3, the CSP for determining ∆ sets is a CSOP in whih the objetive funtion,∑mk=1

Abk , must be minimized.The set of onstraints of a CSP for determining the ause of an error is the samethan for deteting the error exept that abnormality variables are unbound.17



For the sample feature model in Figure 2, after deteting that pl is a deadfeature, the CSOP for providing explanations would be the following:
(VF ∪ VAb ,D ,C ∪ {pl = 1},min m∑k=1

Abk)From all its solutions, and after disarding feature variables and abnormalityvariables taking value 0 �they are not relevant for this purpose�, three ∆set are found: {Ab3 7→ 1}, {Ab8 7→ 1} and {Ab13 7→ 1}. Sine eah abnormal-ity variable is assoiated with a relationship in the feature model, the threeexplanations of why pl is a dead feature are ∆1 = {R3}, ∆2 = {R8} and
∆3 = {R13}.6 Applying our Proposal to a Real CaseWe have applied the implementation level desribed in this paper during asoftware produt line development projet. The projet intends to build a setof Enterprise Resoure Planning (ERP) produts in the ontext of SAUCE, anenvironmental resoures management SPL. SAUCE omprises a set of prod-uts to store and exploit the existing information about �ora and fauna indi�erent rivers. The aim of the SPL is to produe ustomized software thathelps to the management and onservation of these �uvial eosystems.As a �rst result of domain engineering ativities, a large�sale feature modelwas obtained. We followed an approah inspired by the FDD methodologyto develop and re�ne the ERP feature model in two�week iterations. In eahiteration the feature model was reviewed aording to hanges suggested bydomain and appliation engineers using our FAMA tool desribed by Bena-vides et al. (2007). FAMA is an Elipse plugin for feature model edition andanalysis. It has a multisolver analysis engine that performs operations suhas produts ounting, produts �ltering and ommonality analysis by meansof di�erent CSP, BDD or SAT solvers. FAMA has been extended to supportthe error analysis implementation desribed in this artile. This way, FAMAassists the prodution of error�free feature models by deteting and explainingthe emerging errors. Some aptures of the proess are shown in Figure 11. Theempirial results obtained from FAMA in eah iteration are presented in Fig-ure 12. Eah row orresponds to an iteration. Five iterations were performedover the feature model and their data olleted. The olumns are labeled asfollows:
• #F: number of features of the feature model.
• #R: number of relationships without onsidering ross�tree relationships,i.e. requires and exludes relationships.18



Figure 11. FAMA tool has supported the error detetion and explanation in SAUCEdevelopment
• #CTR: number of ross�tree relationships.
• #FC: number of added plus removed features respeting to the previousiteration.
• #RC: number of hanges a�eting the existing relationships plus numberof added and removed relationships respeting to the previous iteration.
• #CTRC: number of added plus removed ross�tree relationships respetingto the previous iteration.
• #P: approximate number of produts represented by the feature model.
• #DF: number of dead features deteted by our tool and orreted by theuser.
• VFM: if the resulting feature model inluded an error to make it to be void.
• #FMF: total number of full�mandatory features deteted by our tool andorreted by the user.In eah iteration, as a onsequene of the hanges in the SPL requirementsand therefore in the feature model, new errors arose even when the previousfeature model was error�free.As a result of our experiene, a high number of ross�tree relationships oftenhinder the engineers to keep a reord of the arising errors. Our tool has sup-ported the evolution of the ERP feature model easing and guaranteeing theprodution of an error�free feature model. Supporting a quiker evolution of19



It #F #R #CTR #FC #RC #CTRC #P #DF VFM #FMF1 61 56 54 - - - 3, 59 · 1010 1 No 22 76 70 86 15 14 32 2, 96 · 1013 1 No 83 79 73 88 3 3 2 1, 17 · 1014 0 No 04 84 78 102 5 9 14 5, 18 · 1014 2 No 45 86 80 104 2 2 3 1, 46 · 1016 0 No 6Figure 12. Evolution of the feature model of an ERP SPL
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Preferences CrayfishFigure 13. ERP feature modelfeature models redues the time invested on this task, allowing the engineersto onentrate in others. The feature model resulting from this proess is de-pited in Figure 13. Notie that for the sake of simpliity we have omittedpart of the features on the feature model and all the ross�tree relationships.7 Related WorkAlthough the automated error analysis in feature models was already identi-�ed as a fundamental task in the original FODA report by Kang et al. (1990),few authors have dealt with it. As a matter of fat, there has not been a sem-inal approah to automatially analyze errors in feature models as far as weknow.Our interest in automating error detetion and explanation arose from thework of von der Massen and Lihter (2004), where the authors proposed aategorization of what they all de�ienies (referred to as errors in this ar-tile) in three levels of severity: redundany, anomaly and inonsisteny. Re-dundanies appear when relationships among features are modeled in multipleways so they an be removed and the set of produts represented by a featuremodel remains the same. In some ases, redundanies an be intentionally in-20



trodued to emphasize a relationship. We have not dealt with them in thisartile beause they do not �t in our onept of error. Anomalies appear whensome produts are lost due to a mismodelling but the feature model still de-�nes some produts. Anomalies generate dead and full�mandatory features.Finally, inonsistenies appear when the feature model ontains ontraditoryrelationships removing a set of produts (dead features) or making it impos-sible to derive produts (void feature models). Unfortunately, von der Massenand Lihter's proposal laks rigorous de�nitions and no automated analysis issuggested.Regarding the works dealing with automated error analysis, we distinguishbetween those that only deal with error detetion and those also oping witherrors explanation. In the �rst group we mention the work of Mannion (2002);Zhang et al. (2004); Czarneki and Kim (2005).Mannion uses �rst�order logi to determine if a feature model is void or not,but no other kind of error is deteted. Zhang et al. suggest the use of anautomated tool support based on the SVM System (MMillan, 1992) to detetvoid feature models and dead features. Finally, Czarneki and Kim proposethe detetion of void feature models and dead features as a marginal result ofapplying binary deision diagrams to represent feature models.In the seond group where errors explanation is dealt with, Batory (2005);Sun et al. (2005); Wang et al. (2005) work on automated error explanationbut they are only able to detet whether a feature model is void or not andwhih are the on�iting relationships.Batory translates feature models into propositional formulas and uses SATsolvers (solvers for propositional alulus) and Logi Truth Maintenane Sys-tems (LTMS) algorithms. Sun et al. translates feature models into Alloy, asimple strutural modeling language based on �rst�order logi (Jakson, 2002).Alloy uses a SAT solver to analyze the relationships that generate a void fea-ture model. Finally, Wang et al. propose the translation of feature models intoan OWL DL ontology. OWL DL is a expressive yet deidable sublanguage ofOWL (Ontology Web Language). It is possible to use automated tools suh asRACER, proposed by Haarslev and Moller (2001) and used in this ase to theautomatially analyze feature models. A summary of the reviewed proposalsis presented in Figure 14.Although not all the previous proposals allow the analysis of dead and fullmandatory features, this is not their main drawbak beause it is ertainlypossible to extend them. In our opinion, the main disadvantage of these pro-posals is that they lak abstration. It is in the sense that they are useful whenfeature models are analyzed using the orresponding formalisms and tools butthey are not extrapolatable to other ways of analyzing errors in feature mod-21



Figure 14. Summary of proposals for the automated error analysis of feature models
els. By ontrast, in this paper, we have presented a more abstrat proposal,beause we use theory of diagnosis priniples, a well�established researh �eldwith strong theoretial foundations, as a more abstrat level of speifying theanalysis of errors in feature models.Due to its level of abstration, our proposal allows extensions in both diagnosisand implementation levels. Other errors an be added in the diagnosis leveland implemented in the implementation level that an also be de�ned usingother tools suh as Binary Deision Diagrams (BDD) or SAT solvers insteadof CSP solvers.New kinds of error an appear when dealing with extended feature models(Benavides et al. (2005); Batory (2005); Batory et al. (2006)) where featureattributes are inluded in the model. Relationships among attributes an alsoonstrain the model, produing dead features for example. Benavides et al.(2005) proposed a diret mapping from a feature model onto CSP that rep-resents attributes. As we have proposed a general shema that supports newerrors just by de�ning the observation that detets them in the diagnosis level,and an implementation to deal with attributes already exists, we think thatwe an extend our proposal to support errors analysis in extended featuremodels. This is an important limitation of the other proposals.22



8 Conlusions and Future workWe have disussed our vision on how SPL and agile methods an ome to-gether, either by applying agile priniples to SPL methodologies or by tailor-ing an existing agile methodology to support SPL development. Independentlyfrom the hosen alternative, supporting automati error detetion and expla-nation is an important ontribution that an be a �rst step in bringing agilepriniples and SPL together. As feature modeling is an error�prone task, anativity that heks the feature model is needed. Large�sale feature modelsmay ontain hundreds of features and represent thousands of produts as itan be seen in our example ase. In these ases, an automated support forerror analysis is needed as doing it by hand is not feasible. Our proposal sup-ports an automated feature model error analysis that is therefore, a �rst stepin our roadmap to integrating agile and SPL tehniques.Our proposal relies on theory of diagnosis to represent the problem of errordetetion and explanation in general terms. The advantage of using this ab-strat representation is twofold: many di�erent implementations an be usedin the implementation layer and the diagnosis level an be extended with newkinds of error just by de�ning the observations that deteted them.By relying on the extensibility of our proposal we have deteted some futureextensions to our proposal. In programming languages, errors orretion isa mature topi. Explanations give the user su�ient information to orreterrors. We will study how to use explanations to assist the user with theorretion of errors.As several implementations an be used to re�ne the diagnosis level, it isimportant to ompare how eah implementation performs to hoose the bestof them. Our future work will ompare the performane of several SAT, CSPand BDD solvers.We have only foused on errors analysis in basi feature models, but they anbe extended with attributes where new kinds of error an appear. Our futurework will extend our proposal to deal with extended feature models.Regarding the integration of SPL and agile methods integration we would liketo thoroughly study both alternatives. Spei�ally, we plan to tailor all thestages in FDD to fully support SPL based on feature models.Although we have presented the most used notation of feature models, it isimportant to notie that there are other notations with di�erent semantis asdesribed by Shobbens et al. (2007). An uni�ed language for feature modelingis needed and if this language is adopted our idea will remain valid but we mayhave to hange the mapping from this new language to theory of diagnosis.23
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